Читаем Искатели необычайных автографов, или Странствия, приключения и беседы двух филоматиков полностью

— Не преувеличивай моих заслуг, о Хайям! Фигурные числа — не мое открытие. Много путешествуя, я, конечно, многое и запамятовал. Но фигурные числа я, помнится, вывез из Вавилона заодно с другими математическими редкостями.

— А все-таки узнали мы о них не от вавилонян, а от тебя и от твоего последователя Никомаха, — упорствует Хайям.

— Ну, если так, — Пифагор делает приглашающий жест, — тогда позволь предоставить слово тебе. Недаром ходят слухи, что Омар Хайям тоже имеет некоторое отношение к арифметическому треугольнику.

— Разве? — усмехается тот. — Другие всегда знают о нас больше, чем мы сами. Во всяком случае, если в моей жизни и было что-нибудь подобное, то сам я об этом начисто забыл. Зато наверняка помню, что арифметический треугольник был известен в Древней Индии и в Древнем Китае. А потому предоставь лучше слово мэтру Тарталье. Надеюсь, он-то свою причастность к арифметическому треугольнику отрицать не станет.

— Ни-ни-ни в коем случае, — подает голос высокий итальянец с глубокими шрамами на подбородке, одетый по моде шестнадцатого столетия. — Хотя числа в этом треугольнике я ра-ра-расположил так, что правильнее было бы называть его прямоугольником.

— Какое, однако, удивительное совпадение! — не выдерживает Фило. — «Тарталья» — по-итальянски «заика», а этот уважаемый мэтр и впрямь заикается.

— Ничего удивительного, — поясняет Асмодей. — Прозвище Тартальи сей даровитый синьор получилкак раз за свое заикание, которое началось у него после сильного ранения в нижнюю челюсть.

— А настоящая его фамилия как? — продолжает приставать любопытный Фило.

Но Асмодей лишь досадливо пожимает плечами. Не всегда ж ему знать то, чего не знает никто! И вообще, дадут ему наконец смотреть передачу?

— Однако, до-до-дорогие мэтры, — продолжает Тарталья, — хочу обратить ваше внимание на то, что арифметические треугольники возникали в разные времена и в разных странах совершенно самостоятельно. Свой я, во-во-во всяком случае, придумал сам.

— И я тоже, достопочтенный мэтр Тарталья, — присоединяется Паскаль, — потому что ваши изыскания были мне, к сожалению, неизвестны.

— Вы забыли сказать главное, уважаемый мэтр Паскаль — вмешивается представительный горбоносый красавец с густыми бархатными бровями и легкой любезной улыбкой в уголках рта.

— Насколько я понял, мэтр Лейбниц, вы просите слова, — строго намекает Пифагор. — Рад его вам предоставить.

Тот, извиняясь, склоняет набок голову в крутокудром каштановом парике. Достопочтенному председателю незачем затрудняться! Он, Лейбниц, хотел лишь заметить, что заслуга мэтра Паскаля не столько в том, что он открыл арифметический треугольник, сколько в том, что ему удалось вывести формулу сочетаний. Ту самую формулу, с помощью которой легко вычислить любой элемент числового треугольника.



— Прошу прощения! — живо перебивает Паскаль. — Одновременно со мной ту же формулу вывел мэтр Пьер Ферма.

— Не отрицаю! — весело басит Ферма. — И все-таки честь ознакомить собравшихся с некоторыми свойствами формулы сочетаний я предоставляю вам.

Паскаль молча кланяется и, подойдя к стоящей у камина грифельной доске, выписывает на ней две таблицы.

— Как видите, — поясняет он, — арифметический треугольник изображен здесь в двух видах: в числовом и условном, где каждый член его выражен через число сочетаний из номера строки по номеру своего места в ней. Разумеется, верхней строке и первому числу каждой строки присвоен нулевой номер. Далее обратите внимание на то, что все сочетания, у которых верхний индекс нуль, равны единице. Почему это так, понять нетрудно. Стоит только сравнить обе таблицы. Выберем, допустим, шестую строку (ее порядковый номер 5) и рассмотрим два ее числа, хотя бы 5 и 5. Одно из них в условном треугольнике обозначено как C51, второе — как C5

4. Но ведь числа эти равны между собой, ибо каждое из них порознь равно 5: C51 = C54 = 5. В свою очередь C51 можно записать какC5
5–4. И если это обобщить для любой строки (n) и любого порядкового числа в ней (m), то получится любопытное свойство сочетаний:

(це из эн по эм равно це из эн по эн минус эм). Отсюда ясно, что так как с одной стороны Cnn = 1, а с другой

то и выходит, что Cn0 = 1. Ну, а дальше уж, для общности правила, условились и С0 тоже считать единицей. Вот вам простой и удобный способ отыскивать любое, даже самое большое число сочетаний. И потому вопрос, чему равно, скажем, число сочетаний из тысячи по девятисот девяноста девяти, не должен пугать даже школьника, — вычислить это проще простого:

— За-за-замечательно! — восхищается Тарталья. — Я бы до такого ни-ни-никогда не додумался.

— Не клевещите на себя, дорогой мэтр Тарталья, — протестует Паскаль. — Просто вы жили на сто лет раньше, и время формулы сочетаний еще не пришло. А теперь попрошу нашего досточтимого председателя предоставить слово мэтру Лейбницу, ибо я горю желанием узнать, что сделал с арифметическим треугольником он.

— С величайшим удовольствием! — кивает Пифагор. — Тем более что я и сам давно дожидаюсь такого случая.

Перейти на страницу:

Все книги серии Филоматики

Искатели необычайных автографов, или Странствия, приключения и беседы двух филоматиков
Искатели необычайных автографов, или Странствия, приключения и беседы двух филоматиков

Любитель изящной словесности Филарет Филаретович Филаретов, или сокращенно Фило, и признающий только красоту математики Матвей Матвеевич Матвеев, или сокращенно Мате, отправляются в путешествие по прошедшим эпохам в поисках автографов великих писателей и математиков. Каково же их удивление, когда оказывается, что они разыскивают одних и тех же людей! На страницах этой удивительной книги вы повстречаетесь с Омаром Хайямом, Блезом Паскалем, Эратосфеном, Фибоначчи, Пифагором и многими другими великими людьми, которые, возможно, предстанут в новом, незнакомом для вас качестве. Немаловажно, что книга написана простым понятным языком и не требует специальных знаний в области математики.

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Математика
Нет соединения с сервером, попробуйте зайти чуть позже