Читаем Искусственный интеллект в прикладных науках. Медицина полностью

В медицинской области существует потребность в автоматической классификации изображений медицинских сканов, таких как снимки рентгеновских лучей, магнитно-резонансная томография (МРТ) или компьютерная томография (КТ). Это может помочь в быстрой и точной диагностике различных заболеваний, таких как рак, пневмония, инсульт и другие.

```python

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

# Загрузка данных

train_data_dir = 'path_to_training_data_directory'

test_data_dir = 'path_to_test_data_directory'

train_datagen = ImageDataGenerator(rescale=1./255)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(

train_data_dir,

target_size=(150, 150),

batch_size=32,

class_mode='binary')

test_generator = test_datagen.flow_from_directory(

test_data_dir,

target_size=(150, 150),

batch_size=32,

class_mode='binary')

# Создание модели CNN

model = Sequential([

Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),

MaxPooling2D(2, 2),

Conv2D(64, (3, 3), activation='relu'),

MaxPooling2D(2, 2),

Conv2D(128, (3, 3), activation='relu'),

MaxPooling2D(2, 2),

Conv2D(128, (3, 3), activation='relu'),

MaxPooling2D(2, 2),

Flatten,

Dense(512, activation='relu'),

Dense(1, activation='sigmoid')

])

# Компиляция модели

model.compile(loss='binary_crossentropy',

optimizer='adam',

metrics=['accuracy'])

# Обучение модели

history = model.fit(

train_generator,

steps_per_epoch=train_generator.samples/train_generator.batch_size,

epochs=10,

validation_data=test_generator,

validation_steps=test_generator.samples/test_generator.batch_size)

# График точности и потерь

plt.plot(history.history['accuracy'], label='accuracy')

plt.plot(history.history['val_accuracy'], label='val_accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.legend

plt.show

```

Этот пример демонстрирует создание и обучение модели сверточной нейронной сети (CNN) для классификации медицинских изображений. Обратите внимание, что для запуска этого кода вам потребуется наличие набора данных медицинских изображений и указание правильных путей к этим данным в переменных `train_data_dir` и `test_data_dir`.


Разберем этапы кода подробнее.

1. Импорт библиотек:

```python

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

```

– `numpy` используется для работы с массивами чисел.

– `matplotlib.pyplot` используется для построения графиков.

– `tensorflow` – фреймворк глубокого обучения.

– `ImageDataGenerator` используется для предварительной обработки изображений перед подачей их в модель.

– `Sequential` используется для создания последовательной модели.

– `Conv2D`, `MaxPooling2D`, `Flatten` и `Dense` – типы слоев нейронной сети.

2. Загрузка данных:

```python

train_data_dir = 'path_to_training_data_directory'

test_data_dir = 'path_to_test_data_directory'

train_datagen = ImageDataGenerator(rescale=1./255)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(

train_data_dir,

target_size=(150, 150),

batch_size=32,

class_mode='binary')

test_generator = test_datagen.flow_from_directory(

test_data_dir,

target_size=(150, 150),

batch_size=32,

class_mode='binary')

```

– Здесь задаются пути к каталогам с обучающими и тестовыми данными.

– `ImageDataGenerator` используется для масштабирования значений пикселей в диапазоне от 0 до 1.

– `flow_from_directory` загружает изображения из указанных каталогов, изменяет их размер до 150x150 пикселей и разбивает их на пакеты размером 32 изображения.

3. Создание модели CNN:

```python

model = Sequential([

Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),

MaxPooling2D(2, 2),

Conv2D(64, (3, 3), activation='relu'),

MaxPooling2D(2, 2),

Conv2D(128, (3, 3), activation='relu'),

MaxPooling2D(2, 2),

Conv2D(128, (3, 3), activation='relu'),

MaxPooling2D(2, 2),

Flatten,

Dense(512, activation='relu'),

Dense(1, activation='sigmoid')

])

```

– Создается последовательная модель.

– Добавляются слои свертки (`Conv2D`) и слои пулинга (`MaxPooling2D`), которые позволяют модели извлекать признаки из изображений.

– Последние слои – полносвязные слои (`Dense`), которые выполняют классификацию.

4. Компиляция модели:

```python

model.compile(loss='binary_crossentropy',

optimizer='adam',

metrics=['accuracy'])

```

– Здесь модель компилируется с функцией потерь `binary_crossentropy`, оптимизатором `adam` и метрикой `accuracy` для оценки производительности модели во время обучения.

5. Обучение модели:

```python

history = model.fit(

train_generator,

steps_per_epoch=train_generator.samples/train_generator.batch_size,

epochs=10,

validation_data=test_generator,

validation_steps=test_generator.samples/test_generator.batch_size)

```

– Обучение модели происходит с использованием метода `fit`.

Перейти на страницу:

Похожие книги

Теория социальной экономики
Теория социальной экономики

Впервые в мире представлена теория социально ориентированной экономики, обеспечивающая равноправные условия жизнедеятельности людей и свободное личностное развитие каждого человека в обществе в соответствии с его индивидуальными возможностями и желаниями, Вместо антисоциальной и антигуманной монетаристской экономики «свободного» рынка, ориентированной на деградацию и уничтожение Человечества, предложена простая гуманистическая система организации жизнедеятельности общества без частной собственности, без денег и налогов, обеспечивающая дальнейшее разумное развитие Цивилизации. Предлагаемая теория исключает спекуляцию, ростовщичество, казнокрадство и расслоение людей на бедных и богатых, неразумную систему управления в обществе. Теория может быть использована для практической реализации национальной русской идеи. Работа адресована всем умным людям, которые всерьез задумываются о будущем нашего мироздания.

Владимир Сергеевич Соловьев , В. С. Соловьев

Обществознание, социология / Учебная и научная литература / Образование и наука
Мэтр
Мэтр

Изображая наемного убийцу, опасайся стать таковым. Беря на себя роль вершителя правосудия, будь готов оказаться в роли палача. Стремясь коварством свалить и уничтожить ненавистного врага, всегда помни, что судьба коварнее и сумеет заставить тебя возлюбить его. А измена супруги может состоять не в конкретном адюльтере, а в желании тебе же облегчить жизнь.Именно с такого рода метаморфозами сталкивается Влад, граф эл Артуа, и все его акции, начиная с похищения эльфы Кенары, отныне приобретают не совсем спрогнозированный характер и несут совсем не тот результат.Но ведь эльфу украл? Серых и эльфов подставил? Заговоры раскрыл? Гномам сосватал принца-консорта? Восточный замок на Баросе взорвал?.. Мало! В новых бедах и напастях вылезают то заячьи уши эльфов, то флористские следы «непротивленцев»-друидов. Это доводит Влада до бешенства, и он решается…

Александра Лисина , Игорь Дравин , Юлия Майер

Фантастика / Фэнтези / Учебная и научная литература / Образование и наука
Мать порядка. Как боролись против государства древние греки, первые христиане и средневековые мыслители
Мать порядка. Как боролись против государства древние греки, первые христиане и средневековые мыслители

Анархизм — это не только Кропоткин, Бакунин и буква «А», вписанная в окружность, это в первую очередь древняя традиция, которая прошла с нами весь путь развития цивилизации, еще до того, как в XIX веке стала полноценной философской концепцией.От древнекитайских мудрецов до мыслителей эпохи Просвещения всегда находились люди, которые размышляли о природе власти и хотели убить в себе государство. Автор в увлекательной манере рассказывает нам про становление идеи свободы человека от давления правительства.Рябов Пётр Владимирович (родился в 1969 г.) — историк, философ и публицист, кандидат философских наук, доцент кафедры философии Института социально-гуманитарного образования Московского педагогического государственного университета. Среди главных исследовательских интересов Петра Рябова: античная культура, философская антропология, история освободительного движения, история и философия анархизма, история русской философии, экзистенциальные проблемы современной культуры.В формате PDF A4 сохранен издательский макет книги.

Петр Владимирович Рябов

Государство и право / История / Обществознание, социология / Политика / Учебная и научная литература