Входной ток
Uвх
/R = — C(dUвх/dt) или Uвых = (1/RC)Безусловно, входным сигналом может быть и ток, в этом случае резистор
Резистор и конденсатор выбраны так:
Рис. 4.48.
В схемах такого типа может потребоваться резистор обратной связи с очень большим сопротивлением. На рис. 4.49 показан прием, с помощью которого большое эффективное значение сопротивления обратной связи создается за счет резисторов с относительно небольшими сопротивлениями.
Рис. 4.49.
Представленная цепь обратной связи работает как один резистор с сопротивлением 10 МОм в стандартной схеме инвертирующего усилителя с коэффициентом усиления по напряжению, равным — 100. Достоинство этой схемы состоит в том, что она позволяет использовать удобные сопротивления резисторов и не создает опасности из-за влияния паразитной емкости, которую всегда нужно учитывать при работе с большими резисторами. Отметим, что в схеме идеального преобразователя тока в напряжение (
Например, если схема, показанная на рис. 4.49, подключена к источнику с большим импедансом (скажем, на вход поступает ток от фотодиода и входной резистор опущен), то выходной сдвиг будет в 100 раз превышать
Схемная компенсация утечки полевого транзистора.
Рассмотрим интегратор с переключателем на полевом транзисторе (рис. 4.48). Ток утечки перехода сток-исток протекает через суммирующий переход даже в том случае, когда полевой транзистор находится в состоянии ВЫКЛ. Эта ошибка может быть преобладающей в интеграторе в случае использования операционного усилителя с очень малым входным током и конденсатора с небольшой утечкой. Например, превосходный «электрометрический» ОУ типа AD549 со входами на полевых транзисторах обладает входным током величиной 0,06 пА (максимум), а высококачественный металлизированный тефлоновый или полистироловый конденсатор емкостью 0,01 мкФ обладает сопротивлением утечки величиной 107 МОм (минимум). При таких условиях интегратор, без учета схемы сброса, поддерживает на суммирующем переходе прямой ток величиной ниже 1 пА (для худшего случая, когда выходной сигнал составляет 10 В двойной амплитуды), что соответствует величине измененияНа рис. 4.50 показано интересное схемное решение.
Рис. 4.50.
Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский
Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука