Читаем Искусство схемотехники. Том 1 (Изд.4-е) полностью

В дифференциальном усилителе (без резистора в коллекторной цепи Т1) эффект Миллера не наблюдается; эту схему можно рассматривать как эмиттерный повторитель, подключенный к каскаду с заземленной базой. На второй схеме показано каскодное включение транзисторов. Т1 - это усилитель с заземленным эмиттером, резистор Rн является общим коллекторным резистором. Транзистор Т2 включен в коллекторную цепь для того, чтобы предотвратить изменение сигнала в коллекторе 

Т1 (и тем самым устранить эффект Миллера) при протекании коллекторного тока через резистор нагрузки. Напряжение U+ — это фиксированное напряжение смещения, обычно оно на несколько вольт превышает напряжение на эмиттере Т1 и поддерживает коллектор Т1 в активной области. На рис. 2.74 представлена лишь часть каскодной схемы; в нее можно включить зашунтированный эмиттерный резистор и делитель напряжения для подачи смещения на базу (подобные примеры были рассмотрены в начале настоящей главы) или охватить всю схему петлей обратной связи по постоянному току. Напряжение U+
можно формировать с помощью делителя или зенеровского диода; для того чтобы напряжение было жестко фиксировано на частотах сигнала, можно шунтировать резистор в базе Т2.

Упражнение 2.14. Объясните, почему эффект Миллера не наблюдается в транзисторах рассмотренной только что схемы дифференциального усилителя и в каскодных схемах.


Паразитные емкости могут создавать и более сложные проблемы, чем те, которых мы сейчас коснулись. В частности: а) спад усиления, обусловленный наличием емкости обратной связи и выходной емкости, сопровождается побочными эффектами, которые мы рассмотрим в следующей главе; б) входная емкость также оказывает влияние на работу схемы даже при наличии мощного источника входных сигналов; в частности, ток, который протекает через Cбэ, не усиливается транзистором, т. е. входная емкость «присваивает» себе часть входного тока, вследствие чего коэффициент усиления малого сигнала

h21э на высоких частотах снижается и на частоте fT становится равным единице; в) дело осложняется также тем, что емкости переходов зависят от напряжения, емкость Cбэ изменяется столь сильно при изменении базового тока, что ее даже не указывают в паспортных данных на транзистор, вместо этого указывается значение частоты fT; г) если транзистор работает как переключатель, то заряд, накопленный в области базы в режиме насыщения, также вызывает уменьшение быстродействия. Эти, а также некоторые другие вопросы, связанные с работой быстродействующих схем, мы рассмотрим в гл. 13
.



2.20. Полевые транзисторы

В этой главе мы до сих пор имели дело с биполярными плоскостными транзисторами, характеристики которых описываются уравнениями Эберса-Молла. Биполярные плоскостные транзисторы были первыми транзисторами и до сих пор они преобладают в разработке аналоговых схем. Однако было бы ошибкой не сказать сейчас несколько слов о транзисторе особого типа - о полевом транзисторе. Детально мы рассмотрим его в следующей главе.

Полевой транзистор во многом похож на обычный биполярный транзистор. Он представляет собой усилительное устройство, имеющее 3 вывода, и может иметь любую полярность. Один из выводов (затвор) предназначен для управления током, который протекает между двумя другими выводами (истоком и стоком). Этот транзистор обладает, однако, одним особым свойством: через затвор ток не протекает, за исключением токов утечки. Это значит, что входные импедансы могут быть очень большими, их предельные значения связаны лишь с наличием емкостей или утечек. При использовании полевых транзисторов нет необходимости заботиться о величине тока, протекающего через базу, что было совершенно обязательно при разработке схем на биполярных транзисторах, о которых мы вели речь в этой главе. На практике входные токи имеют порядок пикоампер. К настоящему времени полевые транзисторы зарекомендовали себя как надежные устройства, способные выполнять разнообразные функции. Их предельно допустимые напряжения и токи сравнимы с соответствующими напряжениями и токами биполярных транзисторов.

В большинстве устройств на основе транзисторов (согласованные пары, дифференциальные и операционные усилители, компараторы, токовые ключи и усилители, радиочастотные усилители, цифровые схемы) используют полевые транзисторы и зачастую они обладают лучшими характеристиками. Более того, микропроцессоры и запоминающие устройства (а также другие крупные устройства цифровой электроники) строятся исключительно на основе полевых транзисторов. И наконец, в области разработки микромощных устройств также преобладают полевые транзисторы.

Перейти на страницу:

Похожие книги

Космическая академия
Космическая академия

В книге освещена малоизвестная для широкого круга читателей область космонавтики, связанная с отбором, обучением, психологической, летной и инженерной подготовкой космонавтов. Отражены практически все направления сложившейся за последние 23 лет системы подготовки космонавтов. Книга даст ясное представление о том, как воспитываются и формируются профессиональные специалисты высокого класса. Последовательно раскрыты этапы становления личности космонавта, начиная с отбора кандидатов в космонавты, прохождения ими общекосмической подготовки с привлечением различных технических средств.Для широкого круга читателей.

Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский

Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука