Транзистор со сверхбольшим значением коэффициента усиления по току.
Составные транзисторы — транзистор Дарлингтона и ему подобные — не следует путать с транзисторами со сверхбольшим значением коэффициента усиления по току, в которых очень большое значение коэффициента h21Э получают в ходе технологического процесса изготовления элемента. Примером такого элемента служит транзистор типа 2N5962, для которого гарантируется минимальный коэффициент усиления по току, равный 450, при изменении коллекторного тока в диапазоне от 10 мкА до 10 мА; этот транзистор принадлежит к серии элементов 2N5961-2N5963, которая характеризуется диапазоном максимальных напряжений UКЭот 30 до 60 В (если коллекторное напряжение должно быть больше, то следует пойти на уменьшение значения β). Промышленность выпускает согласованные пары транзисторов со сверхбольшим значением коэффициента β. Их используют в усилителях с низким уровнем сигнала, для которых транзисторы должны иметь согласованные характеристики; этому вопросу посвященразд. 2.18. Примерами подобных стандартных схем служат схемы типа LM394 и МАТ-01; они представляют собой транзисторные пары с большим коэффициентом усиления, в которых напряжение UБЭ согласовано до долей милливольта (в самых хороших схемах обеспечивается согласование до 50 мкВ), а коэффициент h21Э — до 1 %. Схема типа МАТ-03 представляет собой согласованную пару p-n-p-транзисторов.Транзисторы со сверхбольшим значением коэффициента β
можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316.
2.17. Следящая связь
При задании напряжения смещения, например в эмиттерном повторителе, резисторы делителя в цепи базы выбирают так, чтобы делитель по отношению к базе выступал в качестве жесткого источника напряжения, т. е. чтобы сопротивление параллельно включенных резисторов было значительно меньше, чем входное сопротивление схемы со стороны базы. В связи с этим входное сопротивление всей схемы определяется делителем напряжения — для сигнала, поступающего на ее вход, входное сопротивление оказывается гораздо меньше, чем это действительно необходимо. На рис. 2.64 показан соответствующий пример.
Рис. 2.64.
Полное входное сопротивление схемы равно приблизительно 9 кОм, а сопротивление делителя напряжения для входного сигнала равно 10 кОм. Желательно, чтобы входное сопротивление всегда было большим, и уж во всяком случае неразумно нагружать источник входного сигнала схемы делителем, который в конечном счете нужен только для того, чтобы обеспечить смещение транзистора. Выйти из затруднения позволяет метод следящей связи (рис. 2.65).
Рис. 2.65.
Повышение входного импеданса эмиттерного повторителя на частотах сигнала за счет включения в цепь следящей связи делителя, обеспечивающего смещение базы.
Смещение транзистора обеспечивают резисторы R1
, R2, R3. Конденсатор С2 выбирают таким, чтобы его полное сопротивление на частотах сигнала было мало по сравнению с сопротивлением резисторов смещения. Как всегда смещение будет стабильным, если сопротивление его источника по постоянному току, приведенное в базе (в данном случае 9,7 кОм), значительно меньше сопротивления по постоянному току со стороны базы (в данном случае ~ 100 кОм). Но здесь входное сопротивление для частот сигнала не равно сопротивлению по постоянному току.Рассмотрим путь прохождения сигнала: входной сигнал Uвх
порождает сигнал на эмиттере uЭ ~= uвх, поэтому приращение тока, протекающего через резистор смещения R3, составит i = (uвх — uЭ)/R3 ~= 0, т. е. Zвх = uвх/iвх) ~= . Мы получили, что входное (шунтирующее) сопротивление схемы смещения очень велико для частот сигнала.