Технические приемы проектирования микромощных линейных схем.
Таким образом, мы уже рассмотрели источники питания, технические приемы выключения источника питания, стабилизаторы и эталонные источники, предназначенные для проектирования микромощных приборов. Сейчас, следуя дальше по темам, мы в оставшейся части книги рассмотрим вопросы проектирования линейных и цифровых схем. Начнем же с примера линейной схемы на дискретных элементах (микромощный усилитель звуковых частот с высоким коэффициентом усиления), затем перейдем к техническим приемам разработки на микромощных ОУ. Затем последуют разделы, посвященные проектированию цифровых и микропроцессорных схем, и наконец, некоторые соображения по компоновке маломощных приборов.В основном проектирование маломощных линейных схем означает работу с малыми токами коллектора (стока) и соответственно с большими значениями коллекторных (стоковых) резисторов. Это приводит к тому, что доминирующим становится влияние емкостей, которое проявляется как в виде эффекта Миллера, так и в виде нормального спада частотной характеристики RС-цепи. Вы часто прибегаете к техническим приемам, которые обычно характерны только при конструировании радиочастотных устройств, например применение каскодных (
Другие нежелательные эффекты при работе в режиме с малым потреблением мощности связаны с увеличением уровня шумовой перекрестной помехи (из-за относительно высокого полного сопротивления источников сигнала), уменьшением нагрузочной способности (малые значения рабочих токов, высокие полные сопротивления) и относительно высоким шумовым напряжением транзистора
Как правило, желательно обеспечить функционирование при низких значениях напряжения, поскольку при этом соответственно уменьшаются значения коллекторных резисторов при том же рабочем токе. Кроме того, при том же коллекторном токе мощность снижается пропорционально напряжению источника питания.
Давайте представим себе, что необходим малошумящий усилитель звуковых частот с огромным коэффициентом усиления (по крайней мере 80 дБ) и малым током потребления в статическом режиме, предназначенный для работы в некотором удаленном устройстве с питанием от батареи.
Поскольку уровни сигнала могут меняться в очень широком диапазоне, было бы прекрасно ввести какой-нибудь блок, обеспечивающий переключение коэффициента передачи в диапазоне, скажем, 60 дБ. Для обеспечения долговечности щелочной батареи с напряжением 9 В (500 мА·ч) мы должны отбирать от нее общий ток не более 20 мкА (что соответствует 3 годам ее эксплуатации), и, поскольку другие схемы, вероятно, записываются от той же батареи, мы выделим из общего бюджета ток 10 мкА для питания самого усилителя.
Первая вещь, о которой следует упомянуть, — это то, что микромощный ОУ не сможет обеспечить требуемые рабочие характеристики. Образцовый «нановаттный» ОУ СА3440, функционирующий при токе 10 мкА, имеет коэффициент передачи на постоянном токе 80 дБ (мин.) и произведение усиление — полоса пропускания 300 кГц, т. е. на частоте 20 кГц его коэффициент усиления составляет только 15 (24 дБ). Мы обсудим вопросы проектирования на микромощном ОУ и основные ограничения в следующем разделе. А сейчас все, что мы должны знать, — это то, что аспекты разработки на ОУ (связь по постоянному току, точность, компенсация единичного усиления) достаточно отличаются от того, что потребуется в данном примере, который можно сделать лучше при использовании дискретных элементов.