Читаем Искусство схемотехники. Том 3 (Изд.4-е) полностью

Интерферометрия. Измерения положения с высокой точностью можно проводить, используя отражение лазерного луча от зеркал, скрепленных с предметом, и считывая число интерференционных полос. Предельная точность таких методов определяется длиной волны излучения, так что приходится приложить большие усилия, чтобы добиться точности, большей чем полмикрона (1 микрон, или микрометр, равен 1/1000 мм). Например, промышленный измеритель на лазере, выпускаемый фирмой Hewlett-Packard, имеет разрешение, приближающееся 10-6 см. Лазерные интерферометры сейчас используют для непрерывных наблюдений, для измерений плоскостности и для решения различных задач в научно-исследовательских лабораториях. В Национальном бюро стандартов большинство прецизионных измерений размеров осуществляется интерференционно с помощью Deslatt. Дислетты, несомненно, прекрасны, когда требуется проводить прецизионные физические измерения, так как они позволяют измерять интервалы до миллиангстрема (10-11 см) и углы в дуговых миллисекундах.

Кварцевые генераторы.

Кварцевые кристаллы откликаются на деформацию изменением своей резонансной частоты, таким образом обеспечивая очень точный метод измерения малых смещений или измерений давления. Кварцевые преобразователи давления обеспечивают самое высокое разрешение из всех устройств, имеющихся в настоящее время (об этом см. ниже).



15.04. Ускорение, давление, сила, скорость

Описанные методы позволяют измерять ускорение, давление и силу. Акселерометры содержат в себе тензодатчик, связанный с массивным пробником, или датчик емкостного типа, которые реагируют на изменение в положении пробной массы. В акселерометрах, которые измеряют непосредственно перемещение пробной массы для получения выходного сигнала, приходится демпфировать систему для предотвращения колебаний. В некоторых системах используют обратную связь, препятствующую массе перемещаться относительно тела акселерометра. В этом случае выходной сигнал акселерометра будет соответствовать величине силы, возникающей в петле обратной связи.

ДПЛП, тензодатчики, емкостные преобразователи и кварцевые генераторы применяются для измерений давления в сочетании со специальными устройствами, такими, как манометр Бурдона, полые спиральные кварцевые трубки, которые раскручиваются при заполнении газом. ДПЛП, например, охватывают область измерений от 70 гс/см2 до 7 гс/см2 или больше. Кварцевые осцилляторы обеспечивают самое высокое разрешение и точность. Образцы, выпускаемые фирмой Раroscientific, обеспечивают точность 0,01 % и стабильность 0,001 %. Фирма Hewlett-Packard выпускает кварцевые манометры с полной шкалой 800 кгс/см2 и паспортным разрешением 0,7 гс/см2

.

Для измерения силы и веса часто используются ДПЛП, хотя здесь подходит любой метод измерения перемещений. Полная шкала общедоступного ряда приборов охватывает диапазон от 10 г до 250 г с точностью 0,1 %. Для измерения с высокой точностью малых сил в лабораторных условиях используют приборы с торсионным балансированием кварцевой нити, электростатической балансировкой и т. п. Интересный пример современного подхода представляет собой гравиметр разработки фирм Goodkind и Warburton. В нем вес сверхпроводящей сферы под действием магнитного поля грубо компенсируется в нуль, а остаточный небаланс снимается с помощью электростатических датчиков и пластин. Такой метод позволяет измерять изменения гравитационного поля до 10-9 и с легкостью наблюдать изменение барометрического давления, связанное с влиянием воздушных масс на локальное гравитационное поле!

Магнитные преобразователи скорости. Прежде всего следует отметить, что датчики перемещений можно использовать для измерения скорости, которая является производной положения по времени. Однако можно и непосредственно проводить измерения скорости, принимая во внимание, что напряжение, индуцируемое в проволочной петле, движущейся в магнитном поле, пропорционально скорости изменения магнитного потока, пронизывающего петлю. Такие устройства для измерения скорости содержат длинную проволочную катушку с магнитным сердечником, движущимся внутри ее. Чаще всего магнитные датчики скорости используются в промышленных звукозаписывающих и воспроизводящих устройствах: микрофонах (и в обратном варианте — громкоговорителе), кассетных магнитофонах, электромагнитных звукоснимателях, аналоговых записывающих устройствах. Эти датчики обычно дают сигналы очень низкого уровня (несколько милливольт) и требуют своеобразных схемных решений. Чтобы получить высококачественное воспроизведение звука, надо снизить шумы и наводки на 60 дБ и более, т. е. до уровня микровольт. Поскольку в студиях звукозаписи и на радиостанциях эти сигналы проходят по кабелю очень большое расстояние, задача может осложниться.

На рис. 15.17 показаны способы усиления слабых сигналов от микрофонов и магнитных звукоснимателей.




Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже