В главе 5 мы проводили линии регрессии для данных Гальтона о росте, что позволяло предсказывать, например, рост дочерей на основе роста их матерей с помощью регрессионной прямой с угловым коэффициентом 0,33 (см. табл. 5.2
). Но насколько мы можем быть уверены в положении такой прямой? Бутстрэппинг предоставляет интуитивно понятный способ ответить на этот вопрос, не делая никаких предположений о генеральной совокупности, из которой взяты наблюдения.Составим из 433 пар дочь/мать (рис. 7.4) повторную выборку из 433 элементов (с возвратом) и построим для нее прямую наилучшего соответствия по методу наименьших квадратов. Повторим процедуру столько раз, сколько считаем нужным: рис. 7.4 показывает построенные всего по 20 таким перевыборкам линии наилучшего соответствия, чтобы продемонстрировать их разброс. Поскольку исходный набор данных велик, разброс у этих прямых относительно небольшой – при 1000 бутстрэп-выборках угловой коэффициент с вероятностью 95 % лежит в интервале от 0,22 до 0,44.
Рис. 7.4
Регрессионные прямые для 20 перевыборок из данных Гальтона о росте матерей и дочерей, наложенные на исходные данные. Из-за большого размера выборки угловой коэффициент прямых изменяется относительно слабо
Бутстрэппинг обеспечивает интуитивно понятный, удобный для использования компьютера способ выразить неопределенность в оценках, не делая сильных предположений и не используя теорию вероятностей. Однако этот метод неэффективен, когда нужно найти, например, погрешность в опросе 100 тысяч человек о безработице. Хотя бутстрэппинг – простая, блестящая и крайне эффективная идея, перерабатывать с его помощью такие огромные объемы данных неудобно, особенно при наличии теории, которая может предоставить готовые формулы для величины интервалов неопределенности. Но прежде чем мы ее рассмотрим в главе 9, познакомимся с восхитительной, хотя и непростой теорией вероятностей.
Выводы
• Интервалы неопределенности – важная часть информации о характеристиках выборки.
• Бутстрэппинг – это метод создания из первоначальной выборки новых наборов данных одинакового размера посредством перевыборок с возвратом.
• Выборочные характеристики, вычисленные с помощью бутстрэп-выборок, для больших наборов данных близки к нормальному распределению – независимо от формы исходного распределения данных.
• Интервалы неопределенности, построенные с помощью бутстрэппинга, используют вычислительные мощности современных компьютеров, не требуют предположений о математическом виде генеральной совокупности и сложной теории вероятностей.
Глава 8. Вероятность – язык неопределенности и случайности
В 1650-х годах самозваный шевалье[156]
де Мере столкнулся во время игры с дилеммой. Не то чтобы он был уж слишком азартным игроком (хотя играл довольно увлеченно), но тем не менее хотел знать, в какой из двух игр у него больше шансов на победу.Вариант 1. Правильная игральная кость бросается четыре раза, игрок побеждает, если хотя бы раз выпадает шестерка.
Вариант 2. Пара правильных игральных костей бросается 24 раза, игрок побеждает, если хотя бы раз выпадает пара шестерок.
На что выгоднее поставить?
В соответствии с эмпирическими статистическими принципами шевалье де Мере решил сыграть в обе игры много раз и посмотреть, насколько часто он выигрывает. Это потребовало немало времени и усилий, но в причудливой параллельной вселенной, где были компьютеры, но не было теории вероятностей, шевалье не потратил бы столько времени на сбор данных, а просто смоделировал бы тысячи игр.
На рис. 8.1 представлены результаты такого моделирования – доля побед по мере увеличения количества прохождений игр. Хотя какое-то время Вариант 2 кажется выгоднее, примерно после 400 игр становится ясно, что Вариант 1 лучше и что в (очень) долгосрочной перспективе шевалье может рассчитывать на победу примерно в 52 % игр для Варианта 1 и только 49 % игр для Варианта 2.
Рис. 8.1