Читаем Истина в пределе полностью

Проиллюстрируем это на примере. Рассмотрим, как и в прошлых примерах, движущееся тело, которое в момент времени t прошло расстояние в s(t) = √t. Время будем измерять в секундах, расстояние — в метрах. Вычислить среднюю скорость движения тела несложно: например, в период времени с первой по четвертую секунду средняя скорость будет равна отношению пройденного пути и затраченного времени:

средняя скорость = (s(4) – s(1))/(4-1) = (2 – 1)/3 = 1/3 м/с.

Но что, если нас интересует не средняя скорость, а мгновенная скорость в конкретный момент времени? Чтобы упростить рассуждения, допустим, что мы хотим вычислить мгновенную скорость в тот момент, когда проходит ровно одна секунда от начала движения. Выберем приращение времени h и вычислим среднюю скорость в интервале времени от 1 секунды до (1 + h) секунд:

Чтобы вычислить мгновенную скорость в первую секунду, достаточно свести приращение времени h к нулю. Однако в этом случае снова возникает неопределенность:

Это происходит потому, что мгновенная скорость соответствует значению производной функции пройденного пути s(t) = √t.

в момент времени t = 1.

В предыдущей таблице с числами указано, что значение этой производной должно равняться 0,5. Покажем, что это и в самом деле так, устранив неопределенность следующим способом:

Умножим числитель и знаменатель на √(1+h) + 1 и упростим выражение:

Если в последнем выражении свести приращение времени h к нулю, то мы уже не столкнемся с неопределенностью и делением на ноль. Как и следовало ожидать, при h = 0 значение дроби будет равно 0,5. На языке физики это означает:

мгновенная скорость в момент времени 1 = 1/2 = 0,5.

Следовательно, мы устранили изначальную неопределенность, которая возникает из-за деления ноля на ноль, и получили, что если тело проходит за t

секунд √t метров, то по прошествии 1 секунды оно будет двигаться со скоростью 1/2 м/с.


Интегралы

Другим базовым понятием анализа бесконечно малых является понятие интеграла. Интеграл используется для вычисления площади, ограниченной графиком функции.

Например, пусть дана функция f, определенная на интервале между а

и b. Значение интеграла

будет равно площади следующей фигуры:

Символ ∫ для обозначения интеграла придумал Лейбниц (об этом подробно рассказывается в главе 4). Этот символ представляет собой стилизованную букву S — первую букву латинского слова summa («сумма»).

Интеграл применяется не только для вычисления площадей: в математике он также используется для расчета объемов, длин и определения центра тяжести. В физике ему соответствует понятие работы. Работа, которую необходимо совершить,. чтобы переместить тело под действием силы f из точки а в точку b, рассчитывается по формуле:

Интеграл также используется для расчета пройденного телом пути, если известна скорость тела. Рассмотрим в качестве примера физическую задачу, о которой мы говорили в самом начале этой главы: какой путь пройдет тело спустя 4 секунды после начала движения, если в течение t секунд оно двигалось со скоростью, равной t2

м/с? Ответ вычисляется по следующей формуле:

Задача сводится к вычислению этого интеграла. Если интерпретировать интеграл как площадь фигуры, он будет соответствовать площади, ограниченной участком параболы. Эту площадь вычислил Архимед еще 2300 лет назад. Это открытие наряду с другими принесло ему вечную славу: Архимеда по праву можно считать одним из величайших основателей интегрального исчисления (об этом более подробно рассказывается в главе 2).

Строгое определение интеграла, в котором не участвует понятие площади, — непростой вопрос с точки зрения логики. Здесь, пусть и в несколько иной форме, в дело снова вступают бесконечно малые величины. Из рисунка на предыдущей странице видно, что искомая фигура состоит из отрезков длиной f(t), где t принимает все возможные значения на интервале от а до b. Площадь искомой фигуры представляет собой сумму «площадей» этих отрезков. Однако эти отрезки имеют нулевую ширину, поэтому может показаться, что они не имеют площади. Мы вновь сталкиваемся с понятием бесконечно малой величины — ширины этих отрезков. В нотации, придуманной Лейбницем для обозначения интегралов, площадь фигуры, ограниченной кривой, понимается как сумма бесконечно малых: согласно рисунку на предыдущей странице, все отрезки, образующие фигуру, имеют высоту f(t).

Согласно Лейбницу, бесконечно малая ширина обозначается dt. Площадь этих «отрезков» равна произведению их основания на высоту, то есть f(t) dt, а площадь фигуры, которую мы хотим вычислить, равна сумме этих площадей: ∫f(t)dt.

Смысл этой суммы так и не смогли объяснить ни Ньютон, ни Лейбниц, создатели анализа бесконечно малых. По сути, первое точное определение интеграла было дано почти полтора столетия спустя усилиями Коши. В нем также используется понятие предела (более подробно об этом рассказывается в главе 6).

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Древний Египет
Древний Египет

Прикосновение к тайне, попытка разгадать неизведанное, увидеть и понять то, что не дано другим… Это всегда интересно, это захватывает дух и заставляет учащенно биться сердце. Особенно если тайна касается древнейшей цивилизации, коей и является Древний Египет. Откуда египтяне черпали свои поразительные знания и умения, некоторые из которых даже сейчас остаются недоступными? Как и зачем они строили свои знаменитые пирамиды? Что таит в себе таинственная полуулыбка Большого сфинкса и неужели наш мир обречен на гибель, если его загадка будет разгадана? Действительно ли всех, кто посягнул на тайну пирамиды Тутанхамона, будет преследовать неумолимое «проклятие фараонов»? Об этих и других знаменитых тайнах и загадках древнеегипетской цивилизации, о версиях, предположениях и реальных фактах, читатель узнает из этой книги.

Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс

Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии
Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература