Очень немногие из тех, кто верит в эту идею, перестали считать, что человеческий мозг является истинным создателем цифровых машин и программ, а не наоборот. Слепая вера в то, что созданная человеком технология обернется против своего создателя и превзойдет его, постулирует, что система любого рода (скажем, наш человеческий мозг) способна создать нечто более сложное, чем она сама! Однако сторонники этого тезиса, кроме бесконечного озвучивания своей почти религиозной убежденности, не могут достоверно объяснить происхождение этой избыточной сложности. Я считаю подобное предположение очевидно ложным, поскольку оно нарушает многие общепринятые логические теоремы, включая две теоремы Курта Гёделя о неполноте и более позднюю формулировку, названную теоремой сложности и предложенную аргентинско-американским математиком Грегори Хайтином. По мнению Хайтина, формальная система (такая как компьютерная программа) не может создать подсистему (другую программу), превосходящую ее саму по сложности. В более формальной версии, представленной Джоном Касти и Вернером Депаули в книге «Гёдель: Жизнь логики, разума и математики», теорема Хайтина о сложности формулируется так: существуют числа, имеющие такую сложность, что ни одна компьютерная программа не может их генерировать.
Очевидно, что совокупно труды Гёделя и Хайтина логически противоречат гипотезе о том, что если бы человеческий мозг был устройством компьютерного типа со сложностью X, он мог бы создать нечто (вроде сверхразумного искусственного устройства) с уровнем сложности выше X.
Поскольку эталоном в этом сравнении является цифровой компьютер, имеет смысл начать наш рассказ с возвращения к историческим корням этой удивительной машины. Любой современный цифровой компьютер представляет собой одно из множества возможных конкретных воплощений абстрактного вычислительного устройства, впервые предложенного британским математиком и логиком Аланом Тьюрингом в 1936 году. Этот ментальный конструкт, названный в его часть универсальной машиной Тьюринга (УМТ), и сегодня описывает функционирование любой цифровой машины – от портативного компьютера до самого мощного суперкомпьютера планеты. Универсальная машина Тьюринга работает на основании встроенной таблицы запрограммированных пользователем инструкций, последовательно считывая и оперируя символами с поступающей в машину пленки. По мере прочтения символов на пленке, последовательно одного за другим, машина Тьюринга использует внутреннюю таблицу инструкций (программу) для выполнения различных логических операций, а затем записывает результаты.
Звучит просто, не правда ли? Но, к лучшему или к худшему, большинство технологических прорывов последних восьмидесяти лет, включая появление самого революционного инструмента массовой коммуникации в истории нашего вида – интернета, можно рассматривать в качестве побочного продукта абстрактной ментальной игрушки, возникшей в глубинах разума гениального математика.
Идея о том, что все природные явления можно симулировать на цифровом компьютере, во многом почерпнута из своеобразной и ошибочной интерпретации так называемого тезиса Чёрча – Тьюринга, исходно сформулированного Тьюрингом и американским математиком Алонзо Чёрчем. По сути, этот тезис гласит, что, если известна серия строго определенных этапов решения конкретного математического уравнения или задачи (эта серия этапов называется алгоритмом), цифровой компьютер способен воспроизвести эту операцию и найти решение данного уравнения. Такое уравнение относят к исчислимым функциям.
Здесь-то и начинается путаница.