Читаем Истинный творец всего. Как человеческий мозг сформировал вселенную в том виде, в котором мы ее воспринимаем полностью

Через три недели после проведения первого эксперимента с B3-сетью мы собрались в лаборатории с каким-то особенным предчувствием. На одиннадцатом испытании, когда все три участника решили наконец действительно выложиться по полной, поначалу все выглядело как обычно (проще говоря, ничего не выходило). И вдруг – успех: все в лаборатории услышали долгожданный металлический звук: согласованное ритмичное биение трех соленоидных клапанов, по одному на комнату, означавшее успех, выразившийся в одновременной выдаче награды всем трем участникам. По мере того как вспышки синхронности соленоидов учащались и становились практически непрерывными, все присутствующие поняли, что происходит нечто грандиозное: моторная кора участников нашей тройной мозговой сети обучилась синхронизироваться и работать в прекрасной временной гармонии. Действительно, к концу того дня почти 80 % попыток трех участников были синхронными. Мозги, находившиеся в разных головах и не имевшие между собой никакой физической связи, теперь составляли единую распределенную органическую вычислительную единицу и использовали ее возможности в качестве цифрового компьютера, смешивая электрические сигналы всего лишь 775 нейронов для расчета моторной программы, способной продвигать к цели виртуальную руку.

Если первая демонстрация интерфейса «мозг-машина» в нашей лаборатории двадцатью годами ранее вызвала интерес и послужила началом серьезных современных исследований в области интерфейса «мозг-машина», к чему же могла привести первая демонстрация синхронизации электрической активности мозга нескольких индивидуумов для решения общей двигательной задачи? Мы тогда не могли себе и представить. Больше всего мы тогда жаждали скорее погрузиться в терабайты накопленных за три недели данных и посмотреть, что же происходило в то время, пока три участника обучались мысленно кооперироваться для совершения согласованного действия. Однако к моменту окончания этого анализа разнообразные поведенческие и нейрофизиологические данные пролили свет на то, что происходило за те одиннадцать дней, на протяжении которых функционировала наша B3-сеть. Во-первых, мы подтвердили, что в целом эффективность работы B

3-сети выросла с 20 (день 1) до 78 % (день 11). Как было предсказано с самого начала, максимальная эффективность достигалась тогда, когда все три участника включались в работу полностью и правильно синхронизировали активность коры (рис. 7.2). Проанализировав одновременные записи активности коры мозга трех участников, задействованных в B3-сети (а также некоторые данные, полученные в системе из двух мозгов в B2
-сети), мы обнаружили, что успешность эксперимента в значительной степени коррелировала с высокой степенью синхронизации активности коры трех участников: иными словами, группы нейронов коры в одном мозге начинали производить электрические импульсы в тот же момент, что и кластеры нейронов коры в двух других мозгах.



Рис. 7.2. Разные конфигурации мозгосетей обезьян. A: Организация мозгосети обезьян для решения общей двигательной задачи. Обезьян размещали в разных комнатах. Каждая находилась перед экраном компьютера с изображением виртуальной руки. Поведенческая задача заключалась в том, чтобы с помощью трехмерных перемещений виртуальной руки добраться до виртуальной цели на экране. Трехмерные перемещения виртуальной руки достигались благодаря сочетанию одновременной кортикальной электрической активности в мозге нескольких обезьян, объединенных в мозгосеть. B: Пример общей двигательной задачи, в которой вклад каждой из двух обезьян в перемещение виртуальной руки (X, Y) составлял 50 %. Под диаграммой показана кортикальная локализация имплантированных микроэлектродов. C

: Распределенная задача, в которой одна обезьяна контролировала X-координату движения виртуальной руки, а другая – Y-координату. D: Подробная схема задачи с мозгосетью с участием трех обезьян. Каждая обезьяна решала двумерную задачу, а все три вместе контролировали трехмерное перемещение виртуальной руки. Ramakrishnan A. et al. Computing Arm Movements with a Monkey Brainet. Scientific Reports 5, July 2015: 10767.


Наше внимание привлекли и некоторые другие результаты. Например, когда один из участников эксперимента снижал эффективность работы и на время выходил из игры, двое оставшихся вполне компенсировали временную потерю мощности мозгосети. Они просто повышали частоту возбуждения нейронов собственной моторной коры, увеличивали уровень синхронизации и доставляли виртуальную руку к цели, как и требовалось, без участия третьего члена мозгосети. Поскольку решивший передохнуть лентяй не получал сок, его участие в игре не вознаграждалось, что стимулировало его как можно скорее вернуться к работе.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Основы зоопсихологии
Основы зоопсихологии

Учебник (1-е изд. — 1976 г., 2-е изд. — 1993 г.), написанный видным зоопсихологом К. Э. Фабри, посвящен возникновению, развитию и функционированию психики у животных. Освещаются проблемы общей психологии: отражательная природа психики, взаимосвязь психики и поведения, соотношение врожденного и приобретенного, закономерности развития психики в филогенезе, условия и предпосылки возникновения и развития психики человека. Дается широкое обобщение и анализ современных достижений этологических и зоопсихологических исследований. Приводятся результаты многочисленных эмпирических исследований.Для студентов высших учебных заведений, обучающихся по специальностям «Психология», «Биология», «Зоология» и «Физиология», а также для всех, интересующихся поведением и психикой животных.

Курт Эрнестович Фабри

Домашние животные / Зоология / Биология / Учебники / Дом и досуг / Образование и наука
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

«Сумма биотехнологии» Александра Панчина — это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Александр Панчин , Александр Юрьевич Панчин

Научная литература / Химия / Биология / Прочая научная литература / Образование и наука