В конце XVII в. при систематизации экспериментальных фактов химики рассматривали не столько сами вещества, сколько процессы, которые можно осуществить с их помощью. Ученые пытались выявить то общее, что объединяет химические процессы, и установить, что придает телам горючесть{194}
. Именно сравнение процессов горения, обжига металлов, а также извлечения металлов из руд и стало отправным пунктом при создании единой теории, охватывающей все явления, относящиеся к превращению материи, которая получила название теории флогистона. Термин флогистон (от греч. φλογistos — горючий, воспламеняющийся) использовали врачи для указания на особое воспалительное состояние органов дыхания. Для немецкого врача и химика Георга Эрнста Шталя — основоположника этой теории, флогистон представлял собой особый флюид — составную часть всех горючих тел, которая выделяется при горении или обжиге. Шталь предложил схему процесса горения, объяснявшую роль флогистона. Основы своих представлений Г.Э. Шталь изложил в 1697–1703 гг., а фундаментальное освещение его взгляды получили в 1723 г. в книге «Основания химии». Согласно Шталю, все горючие вещества богаты флогистоном. При этом флогистон является материальным лишь тогда, когда он находится в сочетании с другими веществами в сложных телах. В процессе горения флогистон улетучивается, а то, что остается после завершения горения, флогистона не содержит и потому гореть не может. Шталь утверждал, что ржавление металлов подобно горению дерева. По его мнению, металлы содержат флогистон, а в ржавчине (или окалине) флогистона уже нет. C позиций теории флогистона был объяснен процесс извлечения металлов из руды, что можно считать первым теоретическим открытием в области химии{195}. По мнению Шталя, руда, которая практически не содержит флогистона, нагревается на древесном угле, весьма богатом флогистоном. Флогистон при этом переходит из древесного угля в руду, в результате чего уголь превращается в золу, бедную флогистоном, а руда обогащается флогистоном и превращается в металл.Георг Эрнст Шталь (1659–1734)
Анализ трудов Г.Э. Шталя позволяет сказать, что его взгляды были наиболее близки к эмпирическому элементаристскому направлению. Немецкий ученый считал химическими началами
макротел те компоненты, на которые их можно разложить при помощи химических операций (например обжига). Эти компоненты, по мнению Шталя, не являлись элементами, т.е. неразлагаемыми на более простые составные части. Напротив, немецкий ученый полагал, что в результате обжига образуются сложные компоненты, поскольку выделения действительных элементов нельзя добиться химическими способами. Подобно многим химикам конца XVII — начала XVIII в., Шталь придерживался преформационистской концепции о пред существующих в макротелах псевдоэлементах{196}. C позиций современной химии это означает, что Шталь не видел четкого различия между понятиями элемент и химическое соединение.Сторонники теории флогистона в процессах горения и окисления отводили важную роль воздуху.
Он служил переносчиком флогистона, а также «вбирал» его при окислении или горении. Из воздуха флогистон попадал в листья растений, а затем в древесину. При восстановлении флогистон снова освобождался и возвращался к телу, например, к оксиду металла, нагреваемому на куске древесного угля.На первых порах теория флогистона встретила резкую критику. Ее противники особенно возражали против представления горения и ржавления по сути одним и тем же явлением. Однако Шталь опроверг эти нападки заявлением, что при горении флогистон улетучивается настолько быстро, что нагревает окружающую среду и становится видимым, а при ржавлении флогистон улетучивается медленно, поэтому пламя не образуется. Итак, реакция окисления соответствует потере флогистона, а восстановления — его приобретению. Аналогичным образом при помощи флогистона можно было объяснить процесс дыхания.
В результате работ химиков-флогистиков была сформулирована теория, новизна и отличительные особенности которой состояли в том
, что она одновременно и взаимосвязано рассматривала противоположные реакции окисления и восстановления. Теория флогистона позволила качественно объяснить протекание многих процессов, используемых в химических ремеслах и, самое главное, в металлургии, а также оказала влияние на совершенствование методов «экспериментального искусства».