Сооружение огромных по тем временам домен, снабженных механизированными мехами, требовало экономических и технических затрат, которые значительно превосходили возможности средневековых ремесленников. В начале XVII в. существовали различные формы производственных объединений — коллективные мастерские (товарищества), плавильные заводы, финансируемые правителями княжеств и государств, и, наконец, предприятия, созданные на основе частного капитала{246}
. Становление капиталистических производственных отношений способствовало появлению крупных предприятий, которые охотно воспринимали различные новшества, направленные на усовершенствование технологических процессов в металлургии железа и его сплавов.В XVIII в. доля довольно крупных капиталистических металлургических заводов значительно возросла. Многие из них насчитывали 200 и более рабочих. Укрупнение металлургических заводов способствовало повсеместному распространению новых перспективных технологий в производстве черных металлов, изобретение которых можно считать одним из проявлений промышленной революции XVIII в. По данным Г. Фестера, в 1740 г. в Англии насчитывалось 59 доменных печей, а во Франции в 1789 г. было 202 домны. Их высота достигала от 7 до 20 метров. В 1780 г. в Гарце (Германия) непрерывно функционировали 22 домны и 35 горнов для получения ковкого железа. Данные о производстве чугуна и стали ведущими странами Европы в конце XVIII в. представлены в табл. 7.1.{247}
Немецкий металлургический завод с относительно низкой доменной печью (середина XVIII в.):
а — доменная печь; b — помещение для колошника доменной печи; с — домик, где размещены мехи для подачи воздуха; d — мост для подачи руды и угля к колошнику доменной печи; f — пруд; h — хранилище для угля; i — площадка для хранения руды; k — жилой дом; l — конюшня; m — пивная и помещение для отдыха; n — двор; о — подъездные пути
Таблица 7.1
Объем производства черных металлов ведущими странами Европы в конце XVIII в.
(Год … Объем производства черных металлов … Государство)
1796 … 125000 … Англия
1800 … 50000 … Австро-Венгрия
1789 … 15000 … Пруссия
1786 … 85000 … Россия
1789 … 69000 … Франция
1800 … 60000 … Швеция
В Средние века в производстве стали существовала еще одна чрезвычайно интересная технология, которую разработали и практиковали арабские металлурги, но к сожалению, секреты изготовления знаменитой дамассой стали[21]
не сохранились. По всей видимости, оригинальные клинки из такой стали на протяжении X — первой половины XVIII в. изготавливали талантливые оружейники, жившие в Дамаске и его окрестностях. Дамасская сталь обладала удивительным сочетанием твердости и гибкости, которые обеспечивали превосходное качество изготавливаемого холодного оружия{248}. Такие клинки сравнительно легко перерубали лезвия обычных мечей и даже камни. Крестоносцы, впервые познакомившись с дамасскими мечами, наделяли их поистине мистическими свойствами. Недавние исследования сохранившихся дамасских сабель, выполненные с использованием самых современных физико-химических методов, ставили своей целью получить сталь с похожими свойствами и, по возможности, реконструировать утерянную технологию{249}. Ученые считают, что секрет изготовления дамасской стали восходит к технологиям, которыми владели металлурги Индии и Шри-Ланки еще в III в. до н.э., в основе которых лежит тигельный метод выплавки высокоуглеродистой стали со строго контролируемым содержанием других легирующих примесей. Такую сталь получали в небольших тиглях сплавлением железа, древесного угля и стекла, которое использовали в качестве флюса. Данная технология позволяла получать материал, представляющий собой смесь преципитатов очень твердых карбидов железа и легирующих металлов, окруженных пластичной низкоуглеродистой сталью. Технология получения дамасской стали оказалась утраченной приблизительно в середине XVIII в. В качестве одной из причин прекращения производства сплава историки называют исчерпание запасов особого сорта руды, которая содержала постоянную концентрацию примеси вольфрама и ванадия. Недавние детальные исследования структуры дамасской стали с использованием электронной микроскопии высокого разрешения обнаружили присутствие в ней углеродных нанотрубок{250}, однако, чтобы подтвердить это предположение, необходимо провести дополнительные эксперименты.