Важной вехой в изучении электричества стал 1783 г. Согласно наиболее популярной версии, итальянский физиолог Луиджи Гальвани
из Болонского университета, препарируя лягушку одновременно с экспериментами по статическому электричеству, первым изучил электрические явления при мышечном сокращении. Продолжая свои исследования, итальянский ученый пришел к выводу, что животная ткань вырабатывает электричество («животное электричество»), а металлы играют роль обычных проводников.Эстафету исследований в новой области принял у Л. Гальвани его соотечественник — физик Алессандро Вольта.
В 1800 г. итальянский ученый установил, что можно так подобрать две металлические пластины, разделенные растворами электролитов, что через соединяющий их провод пойдет электрический ток. Вольта разработал первую электрическую батарею, представляющую собой конструкцию из 20 пар пластинок двух различных металлов. Эта батарея, получившая название Вольтова столба, стала первым источником постоянного тока. Электрический ток в гальваническом элементе образуется в результате протекания химической реакции, в которой участвуют два разных металла и разделяющий их раствор электролита. В своих работах А. Вольта привел первые несомненные доказательства тому, что между химическими реакциями и электричеством существует устойчивая связь. Дальнейшее развитие эта идея получила в исследованиях английских химиков Уильяма Николсона и Энтони Карлайла. В своих работах они обнаружили обратную связь — электрический ток может изменять материю и вызывать протекание химической реакции. При помощи электрического тока они разложили воду на водород и кислород, т.е. осуществили электролиз воды. Выделявшиеся по мере разложения воды H2 и O2 они собирали в отдельные сосуды. Последующие измерения позволили установить, что объем выделившегося H2 в два раза больше объема O2.C начала XIX в. гальванический электрический ток стал интенсивно применяться в физических и химических экспериментах. Возможность разложения молекулы воды на простые вещества вдохновила английского химика Гемфри Дэви
на проведение исследований по использованию электрического тока для разложения соединений, которые было нельзя разложить химическим путем. На первых стадиях своих опытов Г. Дэви пропускал ток через растворы изучаемых веществ, в результате чего он практически всегда получал только H2 и O2. Позднее его посетила блестящая догадка удалить воду и перевести анализируемые вещества в расплавленное состояние. В 1807 г., пропуская электрический ток через расплав карбоната калия, Г. Дэви получил маленькие шарики металла, который он назвал потассием (от тривиального названия K2CO3 — поташ). Некоторое время спустя из расплава Na2CO3 Дэви выделил еще один металл, названный содием. Эти чрезвычайно химически активные металлы впоследствии назвали соответственно калием и натрием, хотя в английском языке сохранились названия, присвоенные этим элементам самим первооткрывателем.Гемфри Дэви (1778-1829)
После выделения в свободном состоянии щелочных металлов Г. Дэви доказал, что газообразный хлор — «дефлогистированная муриевая кислота» Шееле — является простым веществом. Модифицируя и изменяя оборудование для проведения электрохимических исследований, английский химик выделил в чистом виде целую группу щелочноземельных металлов:
магний, стронций, барий и кальций.Результаты исследований Г. Дэви, Ж.Л. Гей-Люссака и Л.Ж. Тенара подтверждали, что не только хлор, но и иод являются элементами, а не окисленными радикалами. Более того, с помощью электрохимических экспериментов Г. Дэви доказал, что хлороводородная и иодоводородная кислоты не содержат кислорода. В результате длительного изучения процессов электролиза английский ученый пришел к убеждению, что основной
составной частью кислот, которая и определяет общие химические свойства этого класса соединений, является водород, а не кислород, как это следовало из теории А.Л. Лавуазье (см. гл. 6, п. 6.7).Необходимо отметить, что Г. Дэви был поистине блестящим экспериментатором. Все его работы отличались безукоризненной скрупулезностью процедуры и поразительной точностью полученных результатов. Именно поэтому Дэви весьма прохладно отнесся к атомистической теории Дж. Дальтона. Главной мишенью для критических выпадов оказался характер экспериментальных данных Дальтона, которые казались Г. Дэви явно недостаточными для провозглашения фундаментальных теоретических положений. На основании анализа и сопоставления многочисленных экспериментальных данных Дэви разработал собственную электрохимическую теорию
, призванную объяснить природу химического сродства. В 1807 г. он опубликовал основные ее положения: