Очевидно, что необходимы какие-нибудь системы, чтобы исправить эффекты возмущения атмосферой, известные со времен Ньютона. Такой системой является адаптивная оптика. Исторически можно сослаться на первый пример использования адаптивной оптики Архимедом в 215 г. до н. э. для уничтожения римского флота. Когда римский флот приблизился к Сиракузам, солдаты, выстроенные в линию, смогли сфокусировать на корабли солнечный свет, используя свои щиты в качестве зеркал. Таким способом сотни пучков солнечного света направлялись на малую область корабля. Интенсивность была достаточной, чтобы поджечь его. Таким образом, как гласит легенда, удалось предотвратить атаку вражеским флотом. Эта оригинальная идея вошла в легенду как «сжигающее зеркало» Архимеда.
В 1953 г. Бабкок, который в то время был директором астрономической обсерватории Маунт Вилсон в Калифорнии, предложил использовать деформируемые оптические элементы, управляемые датчиками волнового фронта, для компенсации искажений изображений в телескопе, которые вызываются атмосферой. Это, по-видимому, самое первое научное предложение использовать адаптивную оптику.
Большинство пионерских работ по адаптивной оптике были выполнены американскими военными в 1970-х и 1980-х гг. Они были заинтересованы в применениях, связанных с распространением лазерных пучков в атмосфере, для лучшего определения положений спутников и для лучшего управления полетом ракет. Эти исследования были строго засекречены. Первая система адаптивной оптики была в 1982 г. установлена (и до сих пор работает) Военно-Воздушными Силами на Гавайях.
В астрономии экспериментальные системы адаптивной оптики начали развиваться с начала 1980-х гг., когда большинство военных работ было все еще засекречено. Две исследовательские программы, одна, включающая астрономов, и другая, относящаяся к военным, развивались параллельно, без взаимного обмена информацией. Первоначально был скептицизм относительно полезности этой техники, и было трудно получить финансирование. В 1991 г. ситуация изменилась. Большинство материалов было рассекречено, и телескопы стали давать более четкие изображения в результате адаптивной оптики. С тех пор военные и академические работники действовали сообща.
Рис. 65 показывает общую схему телескопа, в котором используется адаптивная оптика. Датчик волнового фронта фиксирует волновой фронт приходящей волны для того, чтобы измерить величины нужных локальных деформаций. Система обработки информации превращает ее в сигнал, который сразу же можно использовать для коррекции волнового фронта.
Коррекция, в реальном времени, должна произвести искажение, равное и противоположное по знаку тому, которое вызывается атмосферой. Эта операция должна быть повторяемой с той же быстротой, с какой происходят изменения в атмосфере, типично между 10 и 1000 раз в секунду. В реальной системе такая коррекция делается с помощью деформируемого зеркала, представляющего собой тонкую мембрану, форма которой контролируется набором пьезоэлектрических толкателей, прикрепленной к задней стороне.
Информация об искажении волнового фронта можно получить от самого объекта (цели), если он является точечным источником (звезда) и достаточно ярок — ярче звезды шестой величины (самая слабая звезда, различимая невооруженным глазом). Однако многие объекты, интересные для астрономов, не являются точечными источниками, а представляют собой протяженные объекты (такие, как планеты или туманности), более чем в тысячи раз слабея звезды шестой величины. В этих случаях можно использовать ближайшую звезду, чтобы определить опорный волновой фронт, но свет должен проходить через тот же участок атмосферы, через который проходит свет от изучаемого объекта. Это означает, что такая опорная звезда должна быть внутри угла около 2 угловых секунд. Это соответствует очень малой части неба, в которой трудно найти достаточно яркую звезду. Таким образом, остается единственная альтернатива: искусственно создать путеводную звезду (маяк), ярче шестой величины.