Изменение показателя преломления, индуцированное светом, может само служить для получения особых световых импульсов, называемых солитонами. В оптических волокнах солитоны представляют импульсы света, которые остаются сами собой с неизменной длительностью, вопреки явлению дисперсии, которое обычно уширяет длительность импульса. Импульс света получается из сложения лучей разного цвета, которые из-за дисперсии распространяются с разными скоростями, так что при прохождении некоторого расстояния импульс уширяется. Если импульс достаточно яркий, то наведенная нелинейность в точности компенсирует этот эффект, и импульс может распространяться в волокне на тысячи километров без изменения своего временного профиля (формы импульса).
Существует солитон другого вида, т.н. пространственный солитон, в котором нелинейность в точности компенсирует эффект дисперсии, который вызывает поперечное увеличение диаметра пучка светового импульса при его распространении. Такой пространственный солитон может проходить большие расстояния без изменения своих пространственных размеров.
Свойства солитонов и их взаимодействие делает такие импульсы пригодными, в частности, для создания таких устройств, как световые переключатели, ответвители; их, тем самым, можно использовать для передачи в оптических волокнах. В будущем солитоны могут составить основные элементы оптических компьютеров.
Квантовая криптография
Теперь мы рассмотрим одно из наиболее курьезных и интригующих применений лазеров, квантовой оптики и квантовой механики: т. н. квантовую криптографию. Это одно из фантастических применений, которое стало возможным благодаря лазерам и законам квантовой механики.
Квантовая криптография является новым методом засекречивания передачи информации. В отличие от обычных методов криптографии, в квантовой криптографии зашифровка передаваемой информации осуществляется благодаря законам физики. Криптография имеет долгую и замечательную историю в военном деле и в дипломатии, со времен античной Греции. В настоящее время секретность информации становится очень важной и для коммерческой деятельности. В добавок к практическим возможным применениям, квантовая криптография иллюстрирует несколько интересных аспектов квантовой оптики, включая роль принципа неопределенности Гейзенберга в оптических измерениях и двухфотонной интерферометрии.
Первые методы криптографии использовали секретный код (ключ) для зашифровки послания перед его отправкой и для расшифровки при получении. Секретность этих методов часто оказывается под угрозой из-за похищения кода, или анализа, который приводит к расшифровке кода, или ошибок, т.е. всего, что ломает код. Самые современные методы не используют секретный код, а основаны на математических изощренных методах, с помощью которых раскрытие содержания послания представляет результат поиска всех возможных комбинаций, чтобы найти правильную. В любом случае секретность этих методов может быть взломана неожиданными успехами математических технологий расшифровки или увеличения быстродействия компьютеров.
Квантовая криптография использует секретный ключ для кодирования и декодирования информации, которая передается по открытым каналам, но сам ключ не передается обычным способом. Один из методов квантовой криптографии устанавливает идентичные ключи в двух разных местах без передачи какой-либо информации. Хотя это может показаться невозможным с точки зрения классической физики, это становится возможным благодаря нелокальным свойствам двухфотонного интерферометра. В другом методе, с другой стороны, ключ посылается в форме одиночных фотонов, а принцип неопределенности квантовой механики обеспечивает невозможность несанкционированного перехвата информации.
Все методы квантовой криптографии основаны на принципе, что в квантовой механике любое измерение возмущает систему непредсказуемым образом. Объяснить в деталях, как это удивительное применение работает, не легко. Мы ограничимся представлением некоторых идей случая, в котором используется т.н. метод двухфотонной интерферометрии.
Рассмотрим рис. 67. Два человека, Алиса и Боб, находятся на большом расстоянии друг от друга, и имеют два одинаковых интерферометра, в которых используются два полностью отражающих и два частично отражающих зеркала, как показано на рис. 67. Один фотон, который приходит на один из двух интерферометров, например на левый, имеет, согласно квантовой механике, две возможности: либо прямо распространяться от S’1
до S’2 либо, следуя путем S’1, S’2, S’3, S’4. Если эти два пути очень отличаются друг от друга, то интерференция не происходит, и поэтому в первом случае фотон идет в направлении 24, в то время как во втором он идет в направлении 2В. То же самое происходит и для фотона, который попадает на другой интерферометр. Возможные результаты A и B обозначены, как 1A и 1B для правого интерферометра, и 2A и 2B для левого интерферометра, чтобы различать их.