По оценке В. М. Гольдшмидта, на 1 кг морской воды приходится 0.6 кг разрушенных горных пород; при их разрушении извлекается и переводится в океан 66% содержащегося в них натрия, 10% магния, 4% стронция, 2.5% калия, 1.9% кальция, 0.3% лития и т. д. Учитывая распространенность этих элементов в породах земной коры (показанную на рис. 5), нетрудно вычислить получающиеся концентрации соответствующих катионов в морской воде - они совпадают с фактическими характеристиками солености морской воды. В то же время содержание главных анионов в морской воде во много раз выше, чем их количества, которые могут быть извлечены из горных пород. Особенно это относится к хлору и брому, которых в 1 кг современной морской воды в 200 и 50 раз больше, чем в 0.6 кг горных пород. Таким образом, хлор и бром могли попасть в воду только из продуктов дегазации мантии, и мы приходим к одному из основных тезисов А. П. Виноградова:
Общая соленость первичного океана, определяемая содержанием анионов в продуктах дегазации мантии, была, вероятно, близка к современной, но соотношения катионов могли быть несколько иными, так как горные породы первичной коры были преимущественно ультраосновными и основными, и соотношения Na/K и Mg/K в них были много больше, чем в современных горных породах (первичное изобилие магния и повышенное соотношение Mg/Ca в древних породах подтверждается, например, наличием в архейских осадочных породах магнийсодержащих осадков- доломитов, MgCO3·CaCO3; таковы, например, известняки Булавайо в Южной Африке, возраст которых около 3 млрд. лет). Отметим еще, что в водах первичного океана отсутствовал анион окисленной серы,
Приведем еще и другие свидетельства отсутствия в древних атмосфере и океане свободного кислорода. Одним из наиболее важных является высокое значение отношения FeO/Fe2O3, закисного железа к окисному в древних изверженных (и затем метаморфизованных), а также в осадочных породах, особенно в глинах, тогда как в современных океанических глубоководных красных глинах это отношение упало до 1/7 (двухвалентное железо могло в изобилии поступать в гидросферу при серпентинизации богатых фаялитом Fe2SiO4 мантийных гипербазитов в процессе образования земной коры). Это относится, в частности, ко встречающимся в катархее и архее железным рудам: основной рудной составляющей в них является
Аналогичные свидетельства дает присутствие в древних породах также и других легко окисляющихся, но не окисленных веществ: графита - в мощных слоях катархейских гнейсов и мраморов, лазурита (содержащего Na2S) - в катархейских карбонатных породах, свежих и хорошо окатанных зерен пирита FeS2
и уранинита U3O8 (а кое-где даже урановых смолок UO2), - в нижнепротерозойских золото-ураноносных месторождениях Коли-Калтимо в Финляндии, Блайнд-Ривер в Канаде, Витватерсранд в Южной Африке, Жакобина в Бразилии и в других местах. Наконец, о недостатке кислорода свидетельствуют сравнительно низкие темпы выветривания древних пород.