Схема второго варианта фотореле показана на рис. 255,
В третьем варианте фотореле, схема которого изображена на рис. 255,
Рис. 255.
Электромагнитное реле К1 такое же, как в первых вариантах фотореле. Здесь фотоэлемент и резистор R1 образуют делитель напряжения источника питания, с которого на базу транзистора V2 подается отрицательное напряжение смещения. Пока фотодиод не освещен, его обратное сопротивление (а включен он в цепь делителя в обратном направлении) очень большое. В это время напряжение смещения на базе транзистора определяется в основном только сопротивлением резистора R1. Транзистор V2 при этом открыт, а транзистор V4 закрыт. Контакты К1.1 реле К1 разомкнуты. Но стоит осветить фотодиод, как тут же его обратное сопротивление и падение напряжения на нем уменьшатся, отчего транзистор V2 почти закроется, а транзистор V4, наоборот, откроется. При этом реле К1 сработает и его контакты К1.1, замыкаясь, включат исполнительную цепь. При затемнении фотодиода его обратное сопротивление вновь увеличится, транзистор V2 откроется, транзистор V4 закроется, а реле К1, отпуская, своими контактами разорвет исполнительную цепь.
Какова в этих фотореле роль диодов V3, шунтирующих обмотки электромагнитных реле? В те моменты времени, когда транзистор усилителя переходит из открытого состояния в закрытое и ток коллекторной цепи резко уменьшается, в обмотке реле возникает электродвижущая сила самоиндукции, поддерживающая убывающий ток в коллекторной цепи. При этом мгновенное суммарное напряжение ЭДС самоиндукции и источника питания электронного реле значительно превышает максимальное допустимое напряжение на коллекторе и
Питать фотореле и освещающую его лампу можно как от батарей, так и от выпрямителя с выходным напряжением 9-12 В. Выпрямитель можно смонтировать в том же светонепроницаемом ящичке (рис. 256), где будет само фотореле. Прямой посторонний яркий свет не должен попадать на датчик фотореле.
Рис. 256.
Четкость срабатывания любого из фотореле, о которых я здесь тебе рассказал, в значительной степени зависит от его осветителя. Наиболее эффективно фотореле будет работать, если осветитель дает узкий и яркий пучок света в направлении точно на фотоэлектронный датчик. Осветитель можно сделать в виде металлический или картонной трубки длиной 120–220 и диаметром 28–30 мм. Внутри трубки на одном конце укрепи малогабаритную лампу накаливания, рассчитанную на напряжение 9-12 В (например, автомобильную), а на другом собирательную линзу (например, круглое очковое стекло) с фокусным расстоянием 100–120 мм. Взаимное расположение линзы и лампы в осветителе подбери опытным путем так, чтобы свет выходил из осветителя узким пучком.
Как можно использовать фотореле? По-разному. Можно, например, фотореле установить у входа в школу, чтобы оно включало светящуюся надпись: «Добро пожаловать». Или смонтировать его перед стенной газетой, чтобы автоматически включалась подсветка газеты, когда к ней подходят ребята. Его можно установить на модели конвейера, имитирующего погрузку ящиков с готовой продукцией. Всякий раз, когда «ящик» пересекает луч света, срабатывает электромеханический счетчик, включенный в исполнительную цепь, или вспыхивает сигнальная лампа.
Вообще же фотореле является полезнейшим учебно-наглядным пособием для физического кабинета школы. Большим успехом оно будет пользоваться и на вечерах, посвященных технике сегодняшнего дня.
Датчик фотореле можно разместить и на улице, защитив его от прямого попадания искусственного света. Тогда реле будет срабатывать с наступлением ночного времени суток и автоматически включать питание лампы уличного освещения или лестничной клетки, а утром выключать ее.