Рис. 261.
Это опять-таки знакомое тебе электронное реле на транзисторе V1, между базой и эмиттером которого (зажимы X1 и Х2) включен охранный шлейф. Этот шлейф, обозначенный на схеме волнистой линией, представляет собой медный провод диаметром 0,1–0,12 мм, например ПЭВ-1 0,1, протянутый вдоль границы охраняемого объекта. Его сопротивление небольшое — всего 1,5–2 Ом на погонный метр. Поэтому можно считать, что база транзистора соединена с эмиттером непосредственно. Следовательно, пока шлейф дал, транзистор закрыт. Но вот кто-то, может быть собака, желая попасть в охраняемый объект, оборвала шлейф. При этом на базе транзистора оказывается отрицательное напряжение (подаваемое через резистор R1), транзистор открывается, электромагнитное реле К1 срабатывает и его контакты К1.1, замыкаясь, включают сигнализацию — электрозвонок, сирену или просто электролампу, питающуюся от электросети.
Вот, собственно, и все, что можно сказать о принципе работы такого сторожа. Сопротивление резистора R1 зависит от сопротивления шлейфа и коэффициента передачи тока
Рис. 262.
Защитный шлейф этого устройства состоит из двух сложенных вместе тонких изолированных проводов (ПЭВ-1 0,1–0,12), оканчивающихся резистором R3. Другим концом он через зажимы X1 и Х2 включен в эмиттерную цепь транзистора V1. Этот транзистор совместно со сторожевым шлейфом и другими, относящимися к нему деталями, образуют генератор электрических колебаний, подобный гетеродину знакомого тебе преобразовательного каскада супергетеродинного приемника. Генерируемые им колебания частотой около 50 кГц через конденсатор С4 поступают на базу транзистора V2, усиливаются им и через конденсатор С6 подаются к выпрямителю на диодах V3 и V4, включенных по схеме удвоения выходного напряжения. Выпрямленное напряжение в отрицательной полярности поступает через резистор R4 на базу того же транзистора V2, резко уменьшает отрицательное напряжение смещения и, таким образом, закрывает его.
Это дежурный режим работы устройства, при котором потребляемый им ток от батареи питания не превышает 2–3 мА. Такое состояние устройства сохраняется, пока шлейф не поврежден. При обрыве одного из проводов шлейфа цепь питания транзистора V1 будет разорвана, а генерация сорвана. При этом резко увеличится отрицательное напряжение на базе транзистора V2, подаваемое на нее через резистор R5, транзистор откроется, реле К1 сработает и его контакты К1.1 включат систему сигнализации. То же произойдет и при замыкании проводов шлейфа. В этом случае эмиттер транзистора V1 окажется соединенным с общим (плюсовым) проводником цепи питания непосредственно, режим его работы нарушится, из-за чего генерация сорвется и контакты К1.1 реле включат сигнализацию.
В таком сторожевом устройстве надо использовать транзисторы с коэффициентом
Резистор R5 надо подобрать так, чтобы при срыве генерации первого каскада устройства реле четко срабатывало, а во время генерации отпускало якорь.
И еще пример автоматики…
Замки с «секретом» в виде закодированного набора цифр известны давно. Механические замки такого типа ты, конечно, видел — они продаются в хозяйственных магазинах. Кодовые замки широко используются для автоматических камер хранения вещей на железнодорожных вокзалах, в аэропортах, в подъездах домов. Вообще же кодовые замки могут быть как электромеханическими, так и электронными. Исполнительным механизмом кодового замка может служить электромагнит, подвижный сердечник которого механически связан с защелкой дверного замка.
Схема наиболее простого электромеханического кодового замка показана на рис. 263: Y1 — электромагнит, S1-S6 — кнопочные переключатели, S7-S11 — тумблеры. Пульт кнопок, с помощью которых можно отвести защелку замка, находится с наружной, а тумблеры S7-S11 кодирования замка — с внутренней стороны двери. Чтобы электромагнит сработал и таким образом позволил открыть дверь, надо знать код замка и с учетом этого шифра одновременно нажать соответствующие ему кнопки.
Рис. 263.