Читаем Юный радиолюбитель [7-изд] полностью

Предварительно частотомер смонтируй и испытай на макетной панели. Из образцовых конденсаторов включи пока без переключателя S1 только конденсатор С2. Проверь полярность включения всех электролитических конденсаторов, диодов и микроамперметра. Затем движок подстроечного резистора R6 установи в крайнее нижнее (по схеме) положение, а резистор R1 временно замени цепочкой из последовательно соединенных переменного резистора сопротивлением 30–40 кОм и постоянного сопротивлением 4–5 кОм. Включи питание и на вход частотомера подай переменное напряжение электроосветительной сети, пониженное трансформатором до нескольких вольт. Можно, например, как показано на ряс. 289, а, использовать вторичную обмотку сетевого трансформатора блока питания, подключив к ней потенциометром регулировочный переменный резистор Rри с его помощью регулировать напряжение, подаваемое на вход частотомера.



Рис. 289. Схема проверки и градуировки шкалы частотомера


Подбором сопротивления временной цепочки резисторов нужно добиться устойчивого отклонения стрелки микроамперметра при минимальном напряжении (0,3 В) на входе частотомера.

После этого на вход частотомера подай от того же регулировочного резистора переменное напряжение, выпрямленное двухполупериодным выпрямител ем (рис. 289, б). В этом случае частота пульсаций напряжения на входе частотомера будет 100 Гц, т. е. соответствует удвоенной частоте переменного напряжения сети. Теперь стрелка микроамперметра должна отклониться на бо

льший угол, чем при частоте напряжения 50 Гц. Движок подстроечного резистора R5 установи в такое положение, при котором стрелка микроамперметра окажется немного левее середины шкалы. Отметка, сделанная на шкале, будет соответствовать частоте 100 Гц, а вся шкала — частоте 200 Гц.

Затем еще раз подай на вход частотомера переменное напряжение с регулировочного резистора и отметь на дуге шкалы микроамперметра положение ее стрелки. Оно будет соответствовать частоте 50 Гц. Таким образом, у тебя получатся две исходные отметки, не считая нулевой и конечной, по которым можно проградуировать шкалу поддиапазона 20-200 Гц. Она же будет и шкалой двух других поддиапазонов. Надо только при включении образцового конденсатора С3 (0,01 мкФ) результат измерения умножать на 10, а при включении образцового конденсатора С4 (1000 пФ) — на 100. Чтобы знать, на каком поддиапазоне включен частотомер, возле ручки переключателя S1 сделай пометки «х1», «х10» и «х100».

Конструкция частотомера зависит от габаритов и того положения микроамперметра (горизонтального или вертикального), при котором он должен работать, а в принципе может быть такой, как у транзисторного вольтметра постоянного тока. На лицевой панели будут микроамперметр, входные гнезда, переключатель поддиапазонов и выключатель питания. Остальные детали можно смонтировать на плате небольших размеров и укрепить ее на зажимах микроамперметра.

Уточнить градуировку шкалы, особенно верхнюю границу частоты (200 Гц), можно по сигналам генератора колебаний звуковой частоты.


ИЗМЕРИТЕЛЬНЫЕ ГЕНЕРАТОРЫ СИГНАЛОВ ЗВУКОВОЙ ЧАСТОТЫ


Мультивибратор, который в восьмой беседе я рекомендовал использовать в качестве источника сигналов, генерирует колебания, близкие по форме к прямоугольным, и множество гармоник. Он хорош лишь как пробник и совсем непригоден для налаживания усилителей 3Ч, аппаратуры телеуправления моделями, многих электронных автоматов, для которых выходной сигнал измерительных генераторов должен быть синусоидальным.

Расскажу о двух генераторах: на одну фиксированную частоту 1000 Гц и с плавным изменением частоты выходного сигнала примерно от 200 до 3000 Гц. Первый из них проще, второй сложнее. Но чтобы сигналы генераторов были синусоидальной формы, для настройки их потребуется электронно-лучевой осциллограф.

Схему измерительного генератора на одну фиксированную частоту ты видишь на рис. 290.



Рис. 290.Схема генератора фиксированной частоты


Сам генератор прибора представляет собой обычный однокаскадный усилитель на транзисторе V1, охваченный положительной обратной связью. Напряжение положительной обратной связи с нагрузочного резистора R5 подается на базу транзистора V1 через трехзвенную фазосдвигающую цепочку, состоящую из конденсаторов С1-С3, резисторов R1-R4 и входного сопротивления транзистора. В результате усилитель возбуждается и генерирует электрические колебания, частота которых определяется данными деталей фазосдвигающей цепочки. Такие измерительные генераторы называют генераторами типа RC.

Напряжение смещения, обеспечивающее транзистору режим генерации, подается на его базу с делителя R3, R4. Подбором резистора R3, входящего в этот делитель напряжения, добиваются синусоидальной формы выходного напряжения генератора.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Права водителя 2014. Как противостоять недобросовестному гаишнику? С таблицей штрафов
Права водителя 2014. Как противостоять недобросовестному гаишнику? С таблицей штрафов

После того как серьезно ужесточились меры ответственности за нарушение водителями правил дорожного движения, по мнению автора книги, наступила НОВАЯ ЭПОХА В ДОРОЖНОМ ДВИЖЕНИИ РОССИИ. Так как защита прав водителей – одно из направлений профессиональной деятельности Дмитрия Усольцева, он в удобной форме «вопрос – ответ» дает практические (жизненные) советы со ссылкой на правовую базу о том: как инспектор ДПС выбирает, какую машину ему остановить, и в каких случаях он имеет на это право? когда инспектор может изъять права? как проходит медосвидетельствование? как себя вести при ДТП? где можно и нельзя парковаться? предусмотрено ли наказание за владение и использование «мигалок-крякалок»? можно ли затемнять стекла и как сильно, и о многом другом (техосмотре, аптечках и так далее).Книга учитывает все изменения в законодательстве, действующие в 2014 году.

Дмитрий Александрович Усольцев

Автомобили и ПДД / Юриспруденция / Техника / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки