Читаем Как были открыты химические элементы полностью

Между тем радиоэлементы каждой из таких совокупностей заметно различались по атомным массам, порой на несколько единиц. Такое положение вещей рождало растерянность. Некоторые ученые предлагали оставлять многие радиоэлементы вообще вне менделеевской таблицы. Но творческая мысль не мирилась с этим. В 1910 г. шведские ученые Д. Стремгольм и Т. Сведберг предложили размещать по нескольку радиоэлементов в одной клетке таблицы (их правота вскоре стала очевидной). Идею шведских исследователей поддержал в 1911 г. английский радиохимик А. Камерон.

Хотя еще в 1903 г. было доказано, что радиоактивность сопровождается превращением элементов, долгое время ученые не могли сказать с полной определенностью, что именно происходит с тем или иным радиоэлементом, когда он испускает α- либо β-частицу? А ведь ответ на этот вопрос позволял представить, куда перемещается данный радиоэлемент в периодической системе в результате радиоактивного распада. Люди еще не знали, как устроен атом, и о всяких переменах в природе радиоэлемента можно было судить, сопоставляя химические свойства его и продукта его превращения. А задача часто была чрезвычайно трудной, поскольку радиохимикам приходилось оперировать с исчезающе малыми количествами веществ. Во многих случаях химический «портрет» радиоэлемента приходилось рисовать лишь по косвенным признакам.

Упорство исследователей и накопление опыта сделали свое дело: удалось сформулировать правило радиоактивных смещений. В разработке его формулировки участвовали многие ученые, но главная роль принадлежала Ф. Содди и польскому химику К. Фаянсу, поэтому его часто называют правилом Содди-Фаянса. Вот в чем оно заключается: при α-распаде образуется радиоэлемент, который занимает место на две клетки влево от исходного, а при β-распаде на одну клетку вправо. Когда было доказано, что заряд ядра атома равен порядковому номеру соответствующего элемента в периодической системе, эмпирическое правило стало законом радиоактивных смещений: α-частица уносит с собой два положительных заряда, и потому порядковый номер (заряд ядра) исходного элемента понижается на две единицы. Напротив, вылет β-частицы означает повышение положительного заряда ядра на единицу.

Закон сдвига гармонично связал радиоактивные семейства с периодической системой элементов. Через несколько последовательных α- и β-распадов родоначальники семейств превращались в стабильный свинец, а по ходу дела образовывались природные радиоактивные элементы, которые в таблице Менделеева расположились между ураном и висмутом. Но получалось при этом, что каждой клетке системы соответствовало по нескольку радиоэлементов. Они имели одинаковый заряд ядра, но разную массу, т. е. они как бы являлись разновидностями данного элемента, одинаковыми по химическим свойствам и различающимися по массе и радиоактивным характеристикам. Ф. Содди в декабре 1913 г. назвал такие разновидности изотопами (от греческих слов, означающих «одинаковоместные», т. е. занимающие одно место в периодической системе).

Теперь становится понятным, что радиоэлементы не что иное, как изотопы естественных радиоактивных элементов. Три эманации — это изотопы одного радиоактивного элемента радона, занимающего 86-ю клетку периодической системы. Уран, торий, полоний, актиний — все они представлены своими изотопами в радиоактивных семействах. Потом стало ясно, что изотопы есть и у многих стабильных элементов. И вот какое интересное соображение отсюда следует. Открытие стабильного элемента означало одновременное открытие его изотопов, всей плеяды его изотопов. У природных радиоактивных элементов сначала обнаруживали отдельные изотопы. Открытие радиоэлементов и было открытием изотопов. В этом моменте состоит существенная разница между стабильными и радиоактивными элементами с точки зрения особенностей их обнаружения в природе. Немудрено, что периодической системе пришлось выдержать серьезное испытание, когда возникла необходимость размещения в ней обилия радиоэлементов. Ведь она была систематикой элементов, а не изотопов. Формулировка закона сдвига и открытие изотопии внесли существенную ясность и позволили двинуться дальше.

ПРОТАКТИНИЙ

Менделеевский экатантал едва ли не единственный пример в истории радиоактивных элементов, когда их новый представитель в действительности был открыт раньше, чем об этом говорит официальная дата его обнаружения. Речь идет об элементе с порядковым номером 91, располагающемся между торием и ураном. Его долгоживущий изотоп имеет солидный период полураспада (34 300 лет) и, следовательно, должен накапливаться в урановых рудах, да к тому же он является α-излучателем. Если взять за основу общепринятую дату его обнаружения (1918), то резонно задать вопрос: почему же он был открыт столь поздно? Ответ на вопрос в свое время последует. Пока же обратимся к таблице 1 и схемам радиоактивных семейств (см. с. 159), а именно к схеме семейства урана-238.

Перейти на страницу:

Похожие книги

100 знаменитых памятников архитектуры
100 знаменитых памятников архитектуры

У каждого выдающегося памятника архитектуры своя судьба, неотделимая от судеб всего человечества.Речь идет не столько о стилях и течениях, сколько об эпохах, диктовавших тот или иной способ мышления. Египетские пирамиды, древнегреческие святилища, византийские храмы, рыцарские замки, соборы Новгорода, Киева, Москвы, Милана, Флоренции, дворцы Пекина, Версаля, Гранады, Парижа… Все это – наследие разума и таланта целых поколений зодчих, стремившихся выразить в камне наивысшую красоту.В этом смысле архитектура является отражением творчества целых народов и той степени их развития, которое именуется цивилизацией. Начиная с древнейших времен люди стремились создать на обитаемой ими территории такие сооружения, которые отвечали бы своему высшему назначению, будь то крепость, замок или храм.В эту книгу вошли рассказы о ста знаменитых памятниках архитектуры – от глубокой древности до наших дней. Разумеется, таких памятников намного больше, и все же, надо полагать, в этом издании описываются наиболее значительные из них.

Елена Константиновна Васильева , Юрий Сергеевич Пернатьев

История / Образование и наука
MMIX - Год Быка
MMIX - Год Быка

Новое историко-психологическое и литературно-философское исследование символики главной книги Михаила Афанасьевича Булгакова позволило выявить, как минимум, пять сквозных слоев скрытого подтекста, не считая оригинальной историософской модели и девяти ключей-методов, зашифрованных Автором в Романе «Мастер и Маргарита».Выявленная взаимосвязь образов, сюжета, символики и идей Романа с книгами Нового Завета и историей рождения христианства настолько глубоки и масштабны, что речь фактически идёт о новом открытии Романа не только для литературоведения, но и для современной философии.Впервые исследование было опубликовано как электронная рукопись в блоге, «живом журнале»: http://oohoo.livejournal.com/, что определило особенности стиля книги.(с) Р.Романов, 2008-2009

Роман Романов , Роман Романович Романов

История / Литературоведение / Политика / Философия / Прочая научная литература / Психология