Как мы видели в главе 4, гиппокамп содержит нейроны места, то есть клетки, которые срабатывают, когда животное находится (или считает, что находится) в определенной точке пространства. В гиппокампе имеется множество нейронов, кодирующих место, при этом все они реагируют на разные локации. Записав активность достаточного их количества, вы обнаружите, что они охватывают все пространство, в котором движется животное. Когда крыса бежит по коридору, одни нейроны срабатывают у входа, другие – в середине, третьи – ближе к концу. Таким образом, путь, который проходит крыса, отражается в последовательном возбуждении цепочки клеток места: иначе говоря, движение в реальном пространстве превращается во временную последовательность в нейрональном пространстве.
Но вернемся к экспериментам Уилсона и Макнотона. Они обнаружили, что, когда крыса засыпает, клетки места в ее гиппокампе снова возбуждаются в том же самом порядке. Нейроны буквально воспроизводят траекторию, по которой двигалось животное во время бодрствования. Разница лишь в скорости: во время сна клетки могут срабатывать в двадцать раз быстрее. Когда крыса спит, ей снятся настоящие гонки!
Связь между возбуждением нейронов гиппокампа и местоположением животного настолько прочна, что нейробиологи могут расшифровать содержание сна по паттернам нейронной активности321
. Во время бодрствования, когда животное бродит по реальному миру, соответствующая аппаратура систематически фиксирует его местоположение и мозговую активность. Эти данные позволяют обучить специальный декодер – компьютерную программу, которая меняет эту зависимость на противоположную и угадывает положение животного по паттерну возбуждения нейронов. Если ввести в декодер данные, полученные во время сна, мы увидим, что, пока животное дремлет, его мозг вычерчивает виртуальные траектории в пространстве.Таким образом, мозг крысы на высокой скорости воспроизводит те паттерны активности, которые он пережил накануне. Каждая ночь оживляет в памяти минувший день. Что примечательно, реактивация нейронов не ограничивается гиппокампом, а распространяется на кору, где играет решающую роль в синаптической пластичности и консолидации памяти. Благодаря ночной реактивации любое событие нашей жизни, зафиксированное в эпизодической памяти всего один раз, может быть воспроизведено сотни раз в течение ночи (см. цветную иллюстрацию 19). Не исключено, что в подобном переносе воспоминаний и состоит основная функция сна322
. Возможно, гиппокамп специализируется на хранении событий прошедшего дня, используя правило быстрого научения с одной попытки. Ночная реактивация нейронных сигналов распространяет их на другие нейронные сети, главным образом расположенные в коре и способные извлекать максимум информации из каждого эпизода. Возьмем крысу, которая учится выполнять новую задачу: чем выше активность коркового нейрона ночью, тем больше его участие в выполнении задачи на следующий день323. Вывод: реактивация клеток гиппокампа ведет к корковой автоматизации.Наблюдается ли такое же явление у людей? Да. Нейровизуализационные исследования показывают, что во время сна нейронные сети, которые мы использовали в течение дня, реактивируются324
. После нескольких часов игры в