Читаем Как появилась Вселенная? Большие и маленькие вопросы о космосе полностью

Кинетическая энергия мяча (когда он катится из долины) аналогична квантовым возбуждениям и проявляется в виде частиц. Таким образом, энергия, ассоциированная с силой определённого вида, соответствует долине в отсутствие частиц и движению по склону горки в их присутствии. Мяч может застрять в долине и остаться в ней навсегда, так и не докатившись до моря – своего вакуумного состояния. Но в квантовой физике, где движение и положение в пространстве – понятия неопределённые, дела обстоят интереснее. Спонтанные квантовые флюктуации могут быть просто толчком, необходимым для создания того, что называется фазовым переходом.

Перерыв на водные процедуры

Как только появляется квантовый жаргон, всё сразу начинает казаться страшно сложным. Ну, вот что это за «фазовый переход»? Возьмём стакан воды, немного отольём оттуда и дольём снова. Перед нами тот же самый стакан воды? Вроде бы, да. Вода выглядит вполне однородной. У неё есть свойство, которое физики называют симметрией

. Но в другой раз давайте перед тем, как добавить новую часть воды, заморозим её. Теперь появилась кое-какая разница: каждый раз, когда мы замораживаем воду, получившийся лёд выглядит чуть иначе.

Если у вас дома есть форма для ледяных кубиков, вытащите несколько штук и осмотрите их внимательно. У каждого кубика разные трещинки, вмороженные пузырьки воздуха, другие дефекты и особенности. Если мы заменим часть кубика на такой же кусочек другого кубика, у нас получится явно другой ледяной кубик. Мы говорим: лёд не так симметричен, как вода, которую мы заморозили, чтобы его получить. Нагревая воду вместо того, чтобы замораживать, мы получим противоположный эффект. Водяной пар ещё однороднее, чем жидкая вода (чем горячее в принципе материал, тем он более однороден). Причина этого связана с тем, насколько плотно упакована энергия.

Вспомните, что в школе вы уже слышали что-то очень похожее об агрегатных состояниях или фазах вещества. Каждое химическое соединение, например, H2

0, может существовать в твёрдом, жидком или газообразном состоянии (для воды – лёд, вода и водяной пар). Это классические фазы вещества. Привлекая квантовую физику, мы получаем ещё десятки состояний, удачно названных экзотическими фазами.[22]
Квантовые состояния и их фазы не так просто визуализировать, но когда происходит переход из одной фазы в другую, результат этого перехода может проявиться так же быстро, как вылет молекул воды из жидкости в воздух или их остановка и образование ими твёрдого ледяного кристалла.

Возвратимся к нашим знакомым энергетическим горкам. Уровень моря – всё равно что очень холодный лёд: это самая низкая энергия, которую может приобрести классическая твёрдая фаза H20. В жидкой воде энергии побольше – теперь мы в высокогорной долине. Поднимемся ещё выше, на вершину горы: это аналог водяного пара. Нагревая лёд, мы переносим его через вершину пика и опускаем в долину с жидкостью. Добавим ещё тепла – и мы перенесём вещество через следующий пик и поместим в газовую долину.

Двигаться в другую сторону не так просто и очевидно. Начнём, скажем, с жидкой воды. Удерживая её при фиксированной температуре выше 0 °C (32°F), мы позволим ей спокойно плескаться в долине. Теперь начнём понижать окружающую температуру. Энергия теряется, но это значит одно: уровень воды в долине и высота волн будут понижаться. Как же воде перевалить через пик и перелиться на твердую ледяную равнину – уровень моря?



Короткий ответ: никак. Во всяком случае, без посторонней помощи. Этот опыт тоже можно попробовать провести в домашних условиях. Возьмите бутылку дистиллированной воды и поместите её в морозилку. Мы ждём, что, когда она станет холоднее 0 °C, она превратится в лёд. Это и случится с нормальной водой, содержащей примеси и включения – они-то и станут местами, в которых начнётся замерзание. Но чистая вода, без включений, не замёрзнет! Вы найдёте у себя в морозилке жидкую воду с температурой –18 °C (или –0.4°F – это обычная температура в морозильной камере). Если вы будете достаточно аккуратны, вы сможете получить жидкую воду даже при температурах примерно до –50 °C (–58°F)! Это и есть переохлаждённая вода, запертая в своей «жидкой долине».[23] У воды с примесями энергетический ландшафт отличается менее ярко выраженными долинами, и, остывая, она будет соскальзывать вниз по склону горы, не задерживаясь больше ни в каких долинах.

При температуре –18 °C достаточно внести в переохлаждённую воду малейшую асимметрию (скажем, щёлкнуть по стенке бутылки), как начнётся цепная реакция замерзания. Вода перевалит через пик потенциальной энергии, и та начнёт высвобождаться в окружающую среду, позволяя воде занять новое состояние энергетического минимума.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Космос. Прошлое, настоящее, будущее
Космос. Прошлое, настоящее, будущее

«Земля – колыбель человечества, но нельзя вечно жить в колыбели», – сказал когда-то К.Э. Циолковский. И сегодня достаточно оглянуться назад, чтобы понять, как он был прав! Полет Гагарина, выход в космос Алексея Леонова, высадка на Луну, запуски спутников и космических станций – хроника космической эры живет в памяти ее свидетелей. Много лет журнал «Наука и жизнь» рассказывал своим читателям о достижениях космонавтики, астрономии и астрофизики. О звездных событиях на ночном небе и в лабораториях ученых можно было узнать, листая его страницы. Сегодня авторы осмысляют почти столетний опыт этого космического путешествия. И знатоки космоса, и те, кто только его открывают, найдут в этой книге много интересного!

Антон Иванович Первушин , Владимир Георгиевич Сурдин , Ефрем Павлович Левитан , Николай Владимирович Мамуна

Астрономия и Космос