Читаем Как появилась Вселенная? Большие и маленькие вопросы о космосе полностью

Математики восприняли эту концепцию и несколько столетий её разрабатывали. Как это происходит со всеми математическими концепциями, с течением времени она становилась всё абстрактнее. Математическая трактовка идеи симметрии началась с конкретных примеров, таких, как правильные геометрические формы, но к XIX столетию развилась в теорию групп. В самом общем смысле группа – любой набор предметов, сочетание которых даёт другой предмет из того же набора. Прекрасный пример – числа: сложив два из них, мы получим ещё одно число.



Как группы связаны с симметрией? Возьмём окружность. Что можно сделать с окружностью, чтобы в результате получить её же? Можно перевернуть, можно покрутить по часовой стрелке или против неё. Но смять или сплющить нельзя – получится, к примеру, эллипс. Преобразования окружности, при которых её форма сохраняется, – это её симметричные преобразования, и они всегда образуют группу. Математики вывели множество свойств групп. К тому времени, когда современная физика встала на ноги, физики позаимствовали многие из этих идей – и продвинулись вперёд. И в самом деле, симметрия – очень важная вещь; некоторые даже утверждают, что вся физическая наука сводится просто к её исследованию и что современная физика – просто приложение теории групп! И если симметрия остаётся лишь интуитивно важной идеей, то абстрактный математический аппарат теории групп стал критически необходим для понимания Вселенной: он и есть язык квантовой физики.

Есть универсальное правило: хотите установить какую-то физическую закономерность – поищите симметрию.[27] В теоретической физике, науке, где для изучения явлений природы используется математика, а не эксперименты в лабораториях, есть два способа установить какую-либо закономерность. Первый – рассмотреть существующие законы и уравнения и отыскать в них новые симметрии, которых до вас никто не заметил. Второй – предложить новую теорию, с самого начала построенную на симметрии. Для каждого из этих случаев можно привести множество примеров классических физических теорий. К примеру, законы движения планет Иоганна Кеплера – с них, как многие считают, и началась революция, которая привела к становлению современной науки, – прекрасны в своей геометрической простоте. Они требуют, чтобы орбиты планет при их обращении вокруг Солнца имели геометрическую форму эллипса. Однако Кеплером руководило не требование сделать законы симметричными, а необходимость согласовать наблюдательные данные с теорией. По сути, только спустя 250 лет немецкие физики Карл Рунге и Вильгельм Ленц сумели «открыть» в движении планет детальную математическую симметрию.

Перенесёмся теперь в 1905 год – «год чудес» Альберта Эйнштейна. Он, вероятно, единственная личность в истории, которая сразу ассоциируется с математическим уравнением – E = mc

2. Но нам здесь стоит заметить, что оно – прямое следствие математической симметрии. Эйнштейн изменил физику, впервые создав теорию из принципов симметрии вместо того, чтобы, как обычно, пытаться найти уравнения, соответствующие наблюдательным данным.

Симметрия в общей теории относительности Эйнштейна – симметрия точек зрения. Он представлял себе кого-то, кто находится в космическом корабле, вдали от источников гравитации. Внутри корабля невесомость: все предметы плавают в воздухе, совсем не так, как на земной поверхности, где гравитация тянет всё вниз. Потом Эйнштейн представил себе, что кто-то падает в гравитационном поле Земли. Но не просто падает, а находится в комнате, которая тоже падает вместе с ним. В этой падающей комнате человек тоже видел бы, что все предметы плавают в воздухе, как будто никакие гравитационные силы не действуют. С виду всё было бы точно так же, как и для человека в глубинах космоса. Для того, кто пребывает в свободном падении на Земле, гравитации больше не существует. И, как это ни странно звучит, это и стало основой современной теории гравитации.

Хотя формы существования материи, возможно, остались более или менее неизменными с самых первых минут после Большого взрыва и до сегодняшнего дня, наше понимание её стало в некотором смысле совершенно новым. Конечно, древние знали, что такое материя, и имели некоторое представление о химических элементах, приближающееся к современному. С появлением квантовой механики и современной теории атома мы смогли постичь структуру атомов и обнаружили, что все элементы построены из небольшого количества фундаментальных частиц. Поэтому потенциальный ответ на вопрос о причинах существования материи можно было получить только в контексте квантовой физики. И даже в этом контексте он не был найден в его нынешней форме, пока в 1928 году Поль Дирак не вывел названное его именем уравнение.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Космос. Прошлое, настоящее, будущее
Космос. Прошлое, настоящее, будущее

«Земля – колыбель человечества, но нельзя вечно жить в колыбели», – сказал когда-то К.Э. Циолковский. И сегодня достаточно оглянуться назад, чтобы понять, как он был прав! Полет Гагарина, выход в космос Алексея Леонова, высадка на Луну, запуски спутников и космических станций – хроника космической эры живет в памяти ее свидетелей. Много лет журнал «Наука и жизнь» рассказывал своим читателям о достижениях космонавтики, астрономии и астрофизики. О звездных событиях на ночном небе и в лабораториях ученых можно было узнать, листая его страницы. Сегодня авторы осмысляют почти столетний опыт этого космического путешествия. И знатоки космоса, и те, кто только его открывают, найдут в этой книге много интересного!

Антон Иванович Первушин , Владимир Георгиевич Сурдин , Ефрем Павлович Левитан , Николай Владимирович Мамуна

Астрономия и Космос