Математики восприняли эту концепцию и несколько столетий её разрабатывали. Как это происходит со всеми математическими концепциями, с течением времени она становилась всё абстрактнее. Математическая трактовка идеи симметрии началась с конкретных примеров, таких, как правильные геометрические формы, но к XIX столетию развилась в
Как группы связаны с симметрией? Возьмём окружность. Что можно сделать с окружностью, чтобы в результате получить её же? Можно перевернуть, можно покрутить по часовой стрелке или против неё. Но смять или сплющить нельзя – получится, к примеру, эллипс.
Есть универсальное правило: хотите установить какую-то физическую закономерность – поищите симметрию.[27]
В теоретической физике, науке, где для изучения явлений природы используется математика, а не эксперименты в лабораториях, есть два способа установить какую-либо закономерность. Первый – рассмотреть существующие законы и уравнения и отыскать в них новые симметрии, которых до вас никто не заметил. Второй – предложить новую теорию, с самого начала построенную на симметрии. Для каждого из этих случаев можно привести множество примеров классических физических теорий. К примеру, законы движения планет Иоганна Кеплера – с них, как многие считают, и началась революция, которая привела к становлению современной науки, – прекрасны в своей геометрической простоте. Они требуют, чтобы орбиты планет при их обращении вокруг Солнца имели геометрическую форму эллипса. Однако Кеплером руководило не требование сделать законы симметричными, а необходимость согласовать наблюдательные данные с теорией. По сути, только спустя 250 лет немецкие физики Карл Рунге и Вильгельм Ленц сумели «открыть» в движении планет детальную математическую симметрию.Перенесёмся теперь в 1905 год – «год чудес» Альберта Эйнштейна. Он, вероятно, единственная личность в истории, которая сразу ассоциируется с математическим уравнением –
Симметрия в общей теории относительности Эйнштейна – симметрия точек зрения. Он представлял себе кого-то, кто находится в космическом корабле, вдали от источников гравитации. Внутри корабля невесомость: все предметы плавают в воздухе, совсем не так, как на земной поверхности, где гравитация тянет всё вниз. Потом Эйнштейн представил себе, что кто-то падает в гравитационном поле Земли. Но не просто падает, а находится в комнате, которая тоже падает вместе с ним. В этой падающей комнате человек тоже видел бы, что все предметы плавают в воздухе, как будто никакие гравитационные силы не действуют. С виду всё было бы точно так же, как и для человека в глубинах космоса. Для того, кто пребывает в свободном падении на Земле, гравитации больше не существует. И, как это ни странно звучит, это и стало основой современной теории гравитации.
Хотя формы существования материи, возможно, остались более или менее неизменными с самых первых минут после Большого взрыва и до сегодняшнего дня, наше понимание её стало в некотором смысле совершенно новым. Конечно, древние знали, что такое материя, и имели некоторое представление о химических элементах, приближающееся к современному. С появлением квантовой механики и современной теории атома мы смогли постичь структуру атомов и обнаружили, что все элементы построены из небольшого количества фундаментальных частиц. Поэтому потенциальный ответ на вопрос о причинах существования материи можно было получить только в контексте квантовой физики. И даже в этом контексте он не был найден в его нынешней форме, пока в 1928 году Поль Дирак не вывел названное его именем уравнение.