Читаем Как появилась Вселенная? Большие и маленькие вопросы о космосе полностью

У гелия-3 три нуклона (два протона и один нейтрон), у гелия-4 четыре (два протона и два нейтрона), и так далее, до урана-238, самого тяжёлого из природных элементов. Чтобы строить элементы из протонов и нейтронов, нам придётся склеивать меньшие ядра, получая всё более тяжёлые. Если исходный материал – просто океан отдельных протонов и нейтронов, то, чтобы этот процесс начать, неизбежно придётся пройти через что-то состоящее всего из двух нуклонов. У нас всего три возможности составить такую пару: протон-протон (дипротон), нейтрон-нейтрон (динейтрон), или протон-нейтрон (

дейтерон). Мы можем наивно предположить, что дипротоны не могут существовать из-за электростатического отталкивания – в конце концов, одинаковые заряды отталкиваются, а каждый протон обладает положительным электрическим зарядом. Однако сильное взаимодействие, которое склеивает нуклоны друг с другом, называется так не зря. На масштабах, которые мы здесь рассматриваем, отталкиванием зарядов можно пренебречь. Массивные ядра с большим количеством протонов знать не знают ни о каких электромагнитных силах. Мы ещё поговорим об этом позже!

Итак, дипротоны, динейтроны и дейтероны, похоже, прекрасно подходят на роль кубиков, из которых состоит вещество. Но мы не учли одну вещь – спин. Идея спина была введена в квантовую механику Вольфгангом Паули в 1924 году.[32]

Он определил эту величину как «двузначность, не поддающуюся классическому описанию». Двузначность попросту означает нечто, принимающее только два различных значения (как выключатель настольной лампы). Но в классической физике нет ничего, что ведёт себя подобным образом. Как же тогда это описать? Вы угадали – с помощью квантовой механики!



Спин – это внутренняя степень свободы фундаментальной частицы. Вот почему у этого понятия нет хорошего классического аналога. Это одна из первых концепций квантовой физики, с которой встречаются студенты, и происходит это обычно на занятиях по химии. В каждой школьной химической лаборатории на стене висит периодическая таблица элементов. Они пронумерованы по порядку, от 1 (водород, H) до 118 (оганесон, Og), но поначалу кажется, что они организованы в таблицу довольно странным образом. Водород и гелий одиноко стоят в верхней строке, но по мере движения вниз строки начинают заполняться. Всё объясняется в основном порядком, которому следует расположение электронов в атомах каждого элемента. В периодической таблице представлены нейтральные атомы, каждый – со своим полным комплектом электронов. Не будем забывать, однако, что в ранней Вселенной существовали только водород и гелий и что в течение нескольких сотен тысяч лет Вселенная оставалась слишком горячей, чтобы электроны могли надолго прицепиться к ядрам. Но вернёмся к периодической таблице.

При обсуждении атомов на химическом уровне используются такие понятия, как орбитали, оболочки и квантовые числа. Они определяют различные свойства электронов, окружающих ядро. Одно из таких квантовых чисел придумал Паули, чтобы объяснить расположение электронов в оболочках атомов. Правило, выведенное им, заключается в том, что никакие два электрона не могут иметь одного и того же набора квантовых чисел – это так называемый принцип запрета Паули. Возможно, вы помните порядок заполнения орбиталей электронами, который когда-то проходили на уроках химии – 1s, 2s, 2p… 3d, и т. д.



Мы только что сказали, что у всех частиц есть спин. Самая маленькая величина спина – когда его нет, то есть он равен нулю. Оказывается, в одном отношении Паули был неправ: двузначность спина электронов не универсальна. У спина может быть больше значений, и его разрешённые значения могут быть целыми или полуцелыми, то есть спин некоторого объекта может равняться 0, ½, 1, 1½, 2, и т. д. Сейчас мы знаем, что фундаментальные частицы с целочисленными значениями спина (0, 1, 2, и т. д.) ведут себя совершенно не так, как частицы с полуцелым спином (½, 1½, 2½, и т. д.). Первые называются бозонами, а вторые фермионами. Ключевое различие между ними – это, конечно, их отношение к принципу запрета Паули. Согласно ему никакие два фермиона не могут находиться в одном квантовом состоянии: если у нас есть точное описание фермиона (например, протона или электрона), никакой другой фермион не может иметь того же описания. Вспомним, что в школьной химии вам приходилось приписывать каждому электрону различное квантовое число. Таким образом, как только все внутренние степени свободы фермионов – такие, как спин – использованы, другие фермионы уже не могут занимать ту же область пространства. Бозонов же, напротив, туда может набиться сколько угодно – они не подчиняются принципу запрета Паули. В некотором смысле именно поэтому пространство занято в первую очередь веществом, построенным из фермионов, а не из бозонов. Так что не сердитесь, если после бесконечных обедов с индейкой в День Благодарения вы заметите, что объем вашей талии на несколько сантиметров больше, чем был: виновата квантовая физика!

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Космос. Прошлое, настоящее, будущее
Космос. Прошлое, настоящее, будущее

«Земля – колыбель человечества, но нельзя вечно жить в колыбели», – сказал когда-то К.Э. Циолковский. И сегодня достаточно оглянуться назад, чтобы понять, как он был прав! Полет Гагарина, выход в космос Алексея Леонова, высадка на Луну, запуски спутников и космических станций – хроника космической эры живет в памяти ее свидетелей. Много лет журнал «Наука и жизнь» рассказывал своим читателям о достижениях космонавтики, астрономии и астрофизики. О звездных событиях на ночном небе и в лабораториях ученых можно было узнать, листая его страницы. Сегодня авторы осмысляют почти столетний опыт этого космического путешествия. И знатоки космоса, и те, кто только его открывают, найдут в этой книге много интересного!

Антон Иванович Первушин , Владимир Георгиевич Сурдин , Ефрем Павлович Левитан , Николай Владимирович Мамуна

Астрономия и Космос