Читаем Как работает Вселенная: Введение в современную космологию полностью

Обратите внимание, что из закона Хаббла (2.1) следует

что означает, что

Таким образом, замедление означает не только уменьшение Н, оно означает, что qположительно иВеличина Hr убывает при q > 0 согласно формулам (2.23) и (2.27). Это означает, что абсолютная величина отклонения Ωm от единицы увеличивается при расширении Вселенной. Эти отклонения положительны для закрытой модели и отрицательны для открытой. Только плоская модель остается все время плоской. В любом случае модели Фридмана без космологической постоянной, или темной энергии, обеспечивают увеличение величины |1 – Ωm|.

2.7.4. Материя с ненулевым давлением в расширяющейся Вселенной

Рассмотрим объем V, заполненный материей с плотностью энергии ε и давлением р. Оба параметра изменятся, если мы сожмем или расширим этот объем, и сделают они это согласованно. Зависимость между давлением и плотностью энергии называется уравнением состояния. Мы уже обсуждали это в разделе 1.3. Уравнение состояния называется баротропным, если давление является функцией только плотности энергии p = p(ε).

Начнем с получения зависимости этих величин от объема. Для случая пылевидной материи эта зависимость имеет вид (2.8). Для того чтобы получить ее для материи с баротропным уравнением состояния, мы используем закон сохранения энергии, он же первый закон термодинамики, который имеет вид

dE = dQ − dA. (2.29)

Здесь E = εV – внутренняя энергия материи, dE – ее изменение, dQ – количество тепла, поглощенного этой материей, а dA = pdV – механическая работа, совершенная материей в ходе ее расширения.

Термодинамический процесс с dQ = 0 называется адиабатическим. Он не сопровождается передачей тепла внутрь или наружу системы. Чтобы сделать процесс адиабатическим, в лабораториях используется специальное оборудование для предотвращения передачи тепла в ту или иную сторону. В повседневной жизни мы используем термос, чтобы горячие или холодные напитки хранились в практически адиабатических условиях. Но никто не нуждается в термосе, чтобы сделать адиабатическим космологическое расширение. Действительно, температура в однородной Вселенной везде одинакова, поэтому не происходит никакой передачи тепла из одного места в другое, а передача тепла наружу невозможна, ведь Вселенная не имеет никакого «снаружи».

С учетом этого уравнение (2.29) сводится к

dE = d(εV) = εdV +Vdε = −dA = − pdV, (2.30)

или

Vdε = –(ε + p)dV. (2.31)

Зная баротропное уравнение состояния p = p(ε), мы можем легко найти его решение:

Особенно просто рассмотреть случай весьма популярного среди космологов уравнения состояния

p = wε, w = const. (2.33)

Из формул (2.32), (2.33) и учитывая, что V ~ r3, получаем:

Здесь ρ0 – плотность материи в тот момент, когда сфера имела размер r0 или Вселенная имела масштабный фактор a0. В релятивистской космологии это просто настоящий момент, или «сейчас». Так, плотность материи ρ зависит от ее текущего значения ρ0 и отношения размеров, выраженного через красное смещение z. Случай пылевидной материи без давления соответствует w = 0. Подставляя это значение в уравнение (2.34), мы, как и следовало ожидать, получим уравнение (2.8).

Особый случай w = –1 или p = –ε дает интересный результат. Уравнение (2.31) гарантирует, что в этом случае плотность энергии постоянна. Расширение или сжатие Вселенной не меняет ни плотность энергии ε, ни плотность вещества ρ, ни его давление p. Этот случай описывает космологическую постоянную Λ.

2.8. Современная модификация модели

2.8.1. Космологическая постоянная наносит ответный удар

Решения Фридмана побудили Эйнштейна отказаться не только от теории статической Вселенной, но также и от идеи космологической постоянной, которую он впоследствии называл величайшей ошибкой в своей жизни, согласно воспоминаниям его коллеги – физика Георгия (Джорджа) Гамова[36]. Тем не менее другие ученые, занимающиеся новой наукой о свойствах и эволюции Вселенной в целом – космологией, не спешили отказываться от космологической постоянной. Притом что к существованию Λ-члена космологи относились скептически, они рассматривали модели как без космологической постоянной, так и с ее учетом. Долгое время первый вариант хорошо описывал все астрономические данные, но потом ситуация изменилась. Астрономические наблюдения последних десятилетий подтвердили существование космологической постоянной и позволили измерить ее величину Λ = 1,19×10−52 м−2.

Космологическую постоянную Λ можно рассматривать как некоторый экзотический вид среды с постоянной плотностью энергии εΛ, давлением pΛ и плотностью вещества ρΛ, которые не изменяются в ходе космологического расширения. Причиной такого постоянства является отрицательная работа против отрицательной силы давления, которая сохраняет постоянство плотности энергии Вселенной ε = ρc2. И действительно, давление, создаваемое космологической постоянной, отрицательно и характеризуется значением

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Бог и Мультивселенная
Бог и Мультивселенная

На наших глазах фантастика становится реальностью. Новейшие исследования позволяют предположить, что наблюдаемая часть Вселенной — лишь крошечный участок несравненно более обширной и грандиозной Мультивселенной. В этой книге увлекательно и доступно рассказано о формировании современной картины мира, о том, как решительно и болезненно она пересматривалась с развитием науки, о том, какие невероятные горизонты открываются перед космологией, стоит только выйти из плоскости, заданной теорией Большого взрыва и традиционной астрофизикой.Последняя работа Виктора Стенджера, в которой он фактически подводит итоги своей научной деятельности и жизни, убедительно доказывает, что Мультивселенная могла возникнуть естественным путем, без вмешательства каких-либо высших сил.

Виктор Стенджер

Астрономия и Космос / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Религия / Эзотерика / Образование и наука