Читаем Как же называется эта книга? полностью

Физическое решение приводит к ответу несравненно быстрее и, кроме того, подсказывает некую общую идею: поскольку количество жидкости в каждом сосуде после двух переливаний одинаково, то убыль воды в сосуде с водой восполнена вином, а убыль вина в сосуде с вином восполнена водой. Тем самым задача решена. Разумеется, здравый смысл не позволяет нам оценить величину убыли жидкости в каждом сосуде, в то время как арифметическое решение позволяет указать ее точный объем: 30/13 мл. Зато физическое решение применимо к следующей более общей задаче (перед которой арифметический подход оказывается бессильным).

Возьмем те же два сосуда с водой и с вином, что и в предыдущей задаче, и начнем переливать жидкость из одного сосуда в другой, не измеряя каждый раз, какой объем мы переливаем, и не подсчитывая, сколько раз мы производим переливание. Количество переливаемой жидкости может изменяться от одного переливания к другому, лишь бы по окончании всех операций в каждом сосуде снова оказалось по 10 мл жидкости. Спрашивается, чего больше: воды в сосуде с вином или вина в сосуде с водой?

Те же соображения, которые привели нас к физическому решению, позволяют утверждать, что посла всех переливаний воды в сосуде с вином окажется столько же, сколько вина в сосуде с водой, но их недостаточно, чтобы узнать, сколько именно жидкости перешло из одного сосуда в другой.

209

В связи с предыдущей задачей у меня возник следующий вопрос. Представим себе, что первоначально в сосуд A налито 10 мл воды, а в сосуд B — 10 мл вина, и мы переливаем жидкость из одного сосуда в другой и обратно по 3 мл любое конечное число раз. Сколько переливаний требуется произвести, чтобы процентное содержание вина в обоих сосудах стало одинаковым?

Я имел в виду следующий ответ: за любое конечное число переливаний невозможно добиться равенства концентраций вина в обоих сосудах. Независимо от того, сколько вина в одном сосуде, сколько воды в другом и сколько жидкости переливается каждый раз из сосуда в сосуд и обратно (если только один сосуд при переливании не опоражнивается полностью), концентрация вина в сосуде B всегда останется выше, чем в сосуде A. Убедиться в этом можно при помощи простого рассуждения, использующего математическую индукцию. Первоначально концентрация вина в сосуде B, несомненно, выше, чем в сосуде A. Предположим, что после какого-то числа переливаний концентрация вина в сосуде B остается по-прежнему выше, чем в сосуде A. Переливая затем какое-то количество жидкости из сосуда B в сосуд A, мы будем переливать более крепкий раствор в более слабый. Следовательно, и после очередного переливания концентрация вина в сосуде B останется выше, чем в сосуде A. Если мы перельем какое-то количество жидкости из сосуда A в сосуд B, то концентрация вина в B также останется выше, чем в A. Так как любое переливание сводится к одному из этих двух случаев, то мы заключаем, что концентрация вина в сосуде B всегда больше, чем в сосуде A. Единственный способ выравнять концентрации — перелить целиком содержимое одного сосуда в другой.

Если эту задачу рассматривать как чисто математическую, то мои рассуждения безупречны. Но если рассматривать ее как физическую задачу, то в моем рассуждении обнаруживаются уязвимые места. Оно исходит из представления о безграничной делимости жидкости, в то время как реальные жидкости состоят из дискретных молекул. На это обстоятельство один из читателей обратил внимание Мартина Гарднера[6]. Он подсчитал, что после 47 переливаний «туда и обратно» концентрация вина в обоих сосудах с высокой вероятностью окажется равной.

Интересно, останется ли в силе предложенное этим читателем решение, если число молекул в сосуде вина будет нечетным? Проживи я на свете миллион лет, мне никогда не пришло бы в голову, что эта задача не математическая, а физическая.

210. Какой брусок намагничен?

Мартин Гарднер предложил следующую задачу[7]. Представьте себе, что вы заперты в комнате, где (так же как и на вас самих) нет ничего металлического, кроме двух совершенно одинаковых с виду железных брусков. Один из брусков намагничен. Установить, какой именно, можно, подвесив каждый из брусков на нити, обвязанной вокруг середины бруска: намагниченный брусок будет вести себя как стрелка компаса, то есть указывать на север. Нельзя ли установить, какой из брусков намагничен, более простым способом?

Приведенное в книге Гарднера решение состояло в том, чтобы дотронуться концом одного бруска до середины другого. Если вы почувствуете притяжение, то брусок, которым вы дотрагивались, намагничен. Если притяжения не возникает, то в руках у вас находится ненамагниченный брусок.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Юрий Олеша и Всеволод Мейерхольд в работе над спектаклем «Список благодеяний»
Юрий Олеша и Всеволод Мейерхольд в работе над спектаклем «Список благодеяний»

Работа над пьесой и спектаклем «Список благодеяний» Ю. Олеши и Вс. Мейерхольда пришлась на годы «великого перелома» (1929–1931). В книге рассказана история замысла Олеши и многочисленные цензурные приключения вещи, в результате которых смысл пьесы существенно изменился. Важнейшую часть книги составляют обнаруженные в архиве Олеши черновые варианты и ранняя редакция «Списка» (первоначально «Исповедь»), а также уникальные материалы архива Мейерхольда, дающие возможность оценить новаторство его режиссерской технологии. Публикуются также стенограммы общественных диспутов вокруг «Списка благодеяний», накал которых сравним со спорами в связи с «Днями Турбиных» М. А. Булгакова во МХАТе. Совместная работа двух замечательных художников позволяет автору коснуться ряда центральных мировоззренческих вопросов российской интеллигенции на рубеже эпох.

Виолетта Владимировна Гудкова

Драматургия / Критика / Научная литература / Стихи и поэзия / Документальное
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Эволюция: Триумф идеи
Эволюция: Триумф идеи

Один из лучших научных журналистов нашего времени со свойственными ему основательностью, доходчивостью и неизменным СЋРјРѕСЂРѕРј дает полный РѕР±Р·ор теории эволюции Чарльза Дарвина в свете сегодняшних представлений. Что стояло за идеями великого человека, мучительно прокладывавшего путь новых знаний в консервативном обществе? Почему по сей день не прекращаются СЃРїРѕСЂС‹ о происхождении жизни и человека на Земле? Как биологи-эволюционисты выдвигают и проверяют СЃРІРѕРё гипотезы и почему категорически не РјРѕРіСѓС' согласиться с доводами креационистов? Р' поисках ответа на эти РІРѕРїСЂРѕСЃС‹ читатель делает множество поразительных открытий о жизни животных, птиц и насекомых, заставляющих задуматься о людских нравах и Р­РўР

Карл Циммер

Научная литература / Биология / Образование и наука