Читаем Химия завтра полностью

Искра, вероятно, может заставить вступить в реакцию любые соединения и любые элементы. Она будет окислять, восстанавливать, разлагать и соединять. Управляя искусственной молнией, можно менять ее каталитическое действие.

Возможно, именно электрическими будут заводы по производству азотной кислоты из воздуха и воды. Возможно, именно электроразрядные установки станут производить озон из кислорода воздуха. Озон же нужен химикам для множества дел.

Электричество в руках химика — это мощное средство тончайшего и направленного воздействия на вещество, С его помощью можно соединять молекулы и части молекул — вести электросинтез. Мощные электрические силы «сшивают» хрупкие сложные молекулы, причем в определенных местах. Никаким другим способом не удается этого проделать. Именно электричество было одним из средств, которое заставило инертные газы соединиться с фтором и окисью фтора.

Электролизом легко наносить полимерные покрытия на металлы, ткани и те же самые пластмассы. Покрытие можно вдобавок сделать не только твердым, но, если нужно, и нерастворимым, непроницаемым или клейким.

Электроразрядная установка станет мощным химическим реактором.

Химики считают, что в периодической системе нет ни одного металла, который бы нельзя было получить электрохимическим путем. Они говорят: недалек тот день, когда электрохимия найдет способ получения железа из руды.

И электрохимия же сможет создавать сложные органические молекулы — заготовки будущих волокон. Электричество станет «сваривать» молекулы, строя из простых молекул более сложные, поможет получать очень чистые вещества.

Оно и теперь выручает там, где другим путем провести синтез невозможно. Когда же электроэнергия будет дешевле, электрохимия займет одно из первых мест в химической технологии.

С другой стороны, химия проникает в электротехнику и становится союзницей электроники. Вместе они создают новые электронные приборы — хемотроны. По существу, это крошечный химический элемент. В нем происходят обычные для электрохимии процессы, и проявляют они себя таким образом, что легко поддаются управлению.

Нужен миниатюрный электросчетчик. Для этого в ячейке между электродами ставят перегородку. Когда идет ток, на ней с одной стороны накапливается растворенное в электролите вещество. Зная, сколько его отложилось, можно определить, сколько прошло электричества. А отсюда — еще один тип запоминающего устройства для электронно-вычислительных машин.

Нужно измерить давление. В ячейке опять помещают перегородку, на этот раз с небольшим отверстием. Электролит может перетекать из одной части ячейки в другую. Чем больше давление, тем больше перетечет жидкости, тем сильнее изменится ток в цепи.

Приборы эти могут быть разных размеров. Есть счетчик, который помещается в наперстке! Самый маленький хемотрон меньше спичечной головки. Вот как миниатюрны хемотронные приборы, хотя здесь они и уступают полупроводникам.

Для их работы не нужны громоздкие источники тока. Потому-то ими интересуется в первую очередь космонавтика: на ракете каждый грамм на вес золота! Поэтому ими интересуется медицина — ей ведь тоже необходимы приборы-крошки.

Трудно предвидеть, где еще будут работать хемотронные ячейки.

Хемотронные приборы-крошки не будут бояться жары, а потому появятся на разведчиках земных недр, которые попадут в царство высоких температур; они окажутся на ракетах и межпланетных станциях, которые полетят вблизи Солнца или опустятся на «жаркие» планеты — Меркурий и Венеру.

Химия с помощью хемотроники сможет управлять своим собственным производством. И сделает она это органично, «забираясь» в самое существо происходящих превращений. Ведь работает в хемотроне ион — частица вещества, получившая заряд и нередко участвующая в реакции.

Ионы послужат сигнализаторами происходящего в химическом реакторе. Вещества как бы сами с помощью хемотрона доложат о том, что с ними делается: какова их концентрация, плотность, давление, какова скорость потоков. И все это будет «сказано» ионами, выражено электротоком, который появится в приборе и который легко уже передать в электронный автомат. Он мгновенно определит, нет ли отклонений, идет ли реакция так, как надо, и выдаст управляющую команду.

И, что очень важно, хемотрону безразлично, какие вещества находятся в реакторе — пусть даже самые ядовитые, агрессивные. Хемотрон дополнит арсенал электроники, он сделает то, что недоступно полупроводникам.

Электролит хемотрона может реагировать на свет. Не путь ли это к хемотрону-фотоэлементу?

Хемотроника — еще шаг к тому, чтобы позаимствовать полезный опыт природы, Живая клетка — это всегда химическое производство, и работающая в ней «автоматика» напоминает хемотронную систему.

ТОПЛИВНЫЕ ЭЛЕМЕНТЫ

Прямое превращение химической энергии в электричество совершается в обычных электрохимических источниках тока. Они применяются в тех случаях, когда все другие генераторы непригодны, а даже не раз летали в космос вместе с солнечными батареями.

Перейти на страницу:

Похожие книги

От водорода до …?
От водорода до …?

Издание представляет собой сборник рассказов о химических элементах, т. е. о видах атомов, из которых построены звезды и Солнце, Луна и планеты, земля, вода, воздух, растения, животные и мы сами.Это рассказы о тех химических элементах, которые занимают определенное место в периодической системе, созданной великим химиком Дмитрием Ивановичем Менделеевым. В этой естественной системе место, занимаемое тем или иным элементом, позволяет определить не только его химические и физические свойства, но также состав и свойства соединений, образуемых им с другими элементами. Рассказам об элементах предшествует вступление. В нем кратко дана история развития взглядов на материю, из которой построены тела природы.Авторы стремились сделать каждый рассказ по возможности самостоятельным, законченным. Книга может быть особенно полезной при изучении общего курса химии учащимися старших классов средних школ и студентами вузов, где химия не является ведущей специальностью.

Евгений Иванович Руденко , Пётр Рейнгольдович Таубе

Химия