Читаем Хранители времени. Реконструкция истории Вселенной атом за атомом полностью

Изотоп 26Al образуется в массивных звездах на различных стадиях ядерного синтеза (см. гл. 16). В редких, очень массивных звездах (масса которых более чем в тридцать-сорок раз превышает массу Солнца), 26Al может быть извлечен из недр и унесен в космос сильными звездными ветрами, характерными для таких звезд на поздних стадиях их жизни. У всех звезд, масса которых превышает массу Солнца более чем в 8,5–10 раз и которые заканчивают свою жизнь во взрыве, их 26Al распределяется по космосу вместе с другими элементами, порожденными звездой. Мы знаем, что эти процессы продолжаются в Млечном Пути и сегодня, поскольку наши гамма-телескопы обнаружили фотоны с энергией 1,8 МэВ от распада 26Mg. Это позволяет заключить, что в любой момент времени в межзвездном пространстве рассеяно около двух солнечных масс

26Al.

Если бы этот изотоп распределялся равномерно, то, учитывая огромный объем нашей Галактики, в любом определенном месте, например – в нашем протосолнечном облаке, находилось бы неизмеримо малое количество 26Al (менее 50 кг во всей туманности). Но поскольку в космологических масштабах времени период полураспада 26Al довольно короток, он не охватывает всю галактику равномерно, а концентрируется в регионах, где формируются звезды.

Единственный изотоп Алюминия, который живет более 10 минут – помимо 26Al, – это стабильная форма 27

Al. Таким образом, соотношение 26Al/27Al в ранней Солнечной системе, которое мы можем вывести из современного уровня 26Mg и 27Al, составляет
26Al/27Al = 5 x 10–5 (хотя были получены и другие оценки, в два раза ниже, поэтому есть основания предполагать, что радиоактивные частицы могли распределяться неравномерно по всему диску). Это число интересно, потому что оно потенциально может решить другую загадку ранней Солнечной системы – проблему дифференциации астероидов.

Планета, подобная Земле, накапливает так много энергии от огромного количества планетезималей, падающих на нее во время формирования, что становится очень горячей – настолько, что может расплавить камни и позволить тяжелым элементам собраться в ядре, в то время как более легкие всплывают на поверхность. Это распределение по плотности и есть дифференциация, о которой мы упоминали в главе 12. Но для меньших тел, скажем для астероидов, диаметр которых не превышает десятков и сотен километров, гравитационной энергии, высвобождаемой во время аккреции, недостаточно, чтобы их расплавить, и мы могли бы ожидать, что они будут напоминать не гладкое тело с распределенными элементами, а груду обломков, сложенную из тех самых кусочков, из которых они сформировались. Однако мы находим как чисто металлические, так и чисто каменные метеориты, а значит, даже эти небольшие тела вскоре после возникновения каким-то образом тоже расплавились и провели дифференциацию. Впрочем, есть и другой, достаточно мощный источник энергии – теплота радиоактивного распада.

Даже при довольно большом содержании в 2,5 x 10–5

атомов 26Al на один атом 27Al (25 миллионных долей [ppm]) при радиоактивном распаде выделится 3000 джоулей энергии на грамм вещества. Этот уровень намного превышает гравитационную энергию аккреции, и его более чем достаточно, чтобы расплавить астероид и продолжить дифференциацию. Вопрос о происхождении такого избытка 26Al в ранней Солнечной системе остается спорным. Первоначальная идея заключалась в том, что массивная звезда, возникшая из того же облака, что и Солнце, взорвалась неподалеку, после чего в газовом облаке оказалось много радиоактивных изотопов, а у нашего облака, возможно, начался коллапс. Сегодня мы наблюдаем этот процесс в далеких межзвездных облаках, где рождаются новые звезды. Этот сценарий привлекателен еще и потому, что рисует перед нами заманчивую картину, в которой поблизости от нас могла бы возникнуть нейтронная звезда, способная повлиять на предпочтение «левых» аминокислот, которые мы встречаем во всей Солнечной системе (см. гл. 13). Однако против подобных представлений высказаны серьезные возражения. Во-первых, идея взрыва сверхновой прямо по соседству с нами априори неправдоподобна, когда во всей Галактике они происходят всего несколько раз в столетие, а во-вторых, в большинстве моделей, которые согласуются с достаточным количеством 26Al, появляется слишком много Марганца-23 и Железа-60 – настолько много, что не удается объяснить низкое содержание их дочерних ядер в первичном материале Солнечной системы5.

Перейти на страницу:

Похожие книги

Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное