Читаем Хранители времени. Реконструкция истории Вселенной атом за атомом полностью

Более того, в последние несколько лет XIX века и в первое десятилетие XX столетия наблюдался стремительный прогресс в установлении физических свойств атомов, а кроме того, мы смогли опровергнуть их «неделимость» и открыть их составляющие части. В 1897 году Джозеф Джон Томпсон открыл электроны, показав, что они намного уступали атомам по размеру и массе13. В 1909 году Эрнст Резерфорд и его сотрудники обнаружили атомное ядро, в котором пребывает положительный заряд и большая часть атомной массы14. А после этого в течение нескольких лет появилась модель атома, которую разработал Нильс Бор. К современной форме этой модели мы и будем обращаться на протяжении всей данной книги (см. гл. 3)15

. Тем временем в 1901 году Макс Планк ввел новую концепцию, которая описывала взаимоотношения между светом и веществом16, а немногим позже, в 1905 году, Эйнштейн расширил эту идею, объяснив фотоэлектрический эффект17. Эти события стали непосредственной причиной того, что в 1920-х годах расцвела квантовая механика – теория, описывающая поведение материального мира на атомном и меньшем уровне. Сегодня, спустя столетие, эта научная модель остается наиболее точной из всех когда-либо созданных и предоставляет нам прочную основу для того, чтобы воссоздать нашу историю, атом за атомом.

Глава 3


Атом: утилитарный взгляд



Фундаментальный принцип научного мировоззрения гласит, что существует материальная реальность, не зависимая ни от наших впечатлений, ни от наших попыток измерить и интерпретировать эти впечатления. Наука – это процесс, при помощи которого мы строим фальсифицируемые модели

этой реальности, а затем проверяем, насколько точно они соответствуют природе. Его характер итеративен, и прогресс часто достигается не благодаря очередной гениальной догадке, а вследствие того, что нам удается доказать неправильность той или иной модели.

Изначально мы создавали научные модели в попытке объяснить (и предсказать) то, что представало перед нами в непосредственных впечатлениях – полет бейсбольного мяча, движение планет, наши ощущения запаха и вкуса, тепла и холода. Мы можем коснуться мяча, бросить его и поймать; мы видим шествие планет по ночному небу; мы можем вдохнуть аромат нашего кофе, почувствовать его вкус, отметить его температуру. Но когда речь заходит об атомах, у нас нет никакого интуитивного опыта. Мы не можем ни увидеть их, ни дотронуться до них, ни рассмотреть их движение. Однако научные методы применимы и здесь. Они позволяют нам построить подробную, доступную для проверки и фальсифицируемую модель с невероятной предсказательной силой – и тем самым заручиться помощью атомов в нашем стремлении воссоздать историю.

В данном случае наша модель не обязательно должна содержать все, что мы знаем об атомах, и, конечно же, не может вместить того, чего мы не знаем. Но эта модель должна в полной мере соответствовать известной нам физической реальности и описывать все характеристики атомов, имеющие ключевое значение для нашего проекта. В ее определении и заключается предмет данной главы.

Иерархия вещества


Давайте же начнем с того, с чего начинает любой младенец – с окружающего мира, который мы можем видеть и осязать. Такое впечатление, что существуют тысячи разных веществ, и каждое обладает различным цветом, запахом, текстурой, отражательной способностью… всего этого много, очень много. В нашем языке есть слова, призванные классифицировать вещи по назначению (столовые приборы: нож, вилка, ложка), по внешнему облику (блестящая, тусклая, чистая, грязная ложка), по материалу, из которого они сделаны (серебряная, стальная или пластиковая ложка), и по сотням других категорий. Но если бы я попросил вас ограничиться, скажем, лишь тремя категориями – широчайшей группировкой из возможных – и охватить все, что вы когда-либо видели или чувствовали, вы бы, скорее всего, согласились, что такими категориями станут три состояния вещества: твердое тело, жидкость и газ1.

Подобное распределение не означает, что мы должны отказаться от более тонких разграничений в предложенных рамках. Серебряная ложка отличается от пластиковой и на ощупь, и по весу; более того, такие ложки по-разному реагируют на тепло, когда вы опускаете их в кофе, а также стоит сказать, что цена их замены, если вы случайно выкинете их в мусорное ведро, будет различаться. Но у них есть нечто общее: и серебряная, и пластиковая ложка – это твердые тела, и вы не можете их сжать и изменить их форму (по крайней мере без значительных усилий).

С другой стороны, кофе, хотя его тоже нельзя сжать, демонстрирует качественное отличие – он сам собой принимает форму контейнера, в который его наливают; жидкость без усилий вмещается и в кофейник с широким дном, и в более узкую кофейную чашечку.

И, наконец, есть почти прозрачный пар, поднимающийся над кипящим кофе. Если вы попытаетесь его схватить, то можете почувствовать его тепло, но раскройте ладонь – и вы ничего в ней не обнаружите. Газ просто рассеивается.

Перейти на страницу:

Похожие книги

Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное