А, между тем, в семидесятые годы мертвые нынче академики-гиганты говорили о грандиозной сложности задач, что встанут перед наукой и человечеством в ХМ столетии. Неявно, но они давали понять: только гениям-энциклопедистам под силу соединить разорванное знание и совершить нужные прорывы. Они говорили о силе фантазии ученого и ее огромной роли в грядущих прорывах. Сегодня, читая их, по сути, завещания и пребывая в уже наступившем столетии, мы обнаруживаем себя среди упадка, нового варварства и мракобесия, надевшего маску "официальной науки".
Великий русско-советский академик, биохимик Николай Семенов (1896-1986), лауреат Нобелевской премии и Герой труда СССР, в августе 1974 года тоже говорил о гениях с живой фантазией, потребных нынешней науке.
" ... Ученый-фантазер - характеристика, прямо скажем, убийственная.
И вместе с тем, когДа об ученом говорят, что он лишен фантазии, воображения, за этим также стоит явное неодобрение. Словом, согласившись рассказать о будущем химии и смежных областей, я рискую закрепить за собой прозвище "ученый-фантазер Поэтому прошу учесть, что в этом моем "паДении " виноват не только я, но и реДакция, пожелавшая получить рассказ о научном направлении, которое уже 6' начале пути сулит захватывающие перспективы. Это направление можно назвать химической бионикой. Его цель - призвать на службу человеку те поразительные по своей эффективности химические процессы, которые протекают в живой природе .
. Мы научились синтезировать белок в лабораториях, но эта операция требует многих месяцев упорной работы. А в живых системах те же реакции протекают за несколько минут, при температурах и Давлении, близких к УСЛОВИЯМ окружающей среды. И в отличие от многих промышленных процессов, биохимические не загрязняют среды все проДукты жизнеДеятельности одних организмов полностью утилизуются Другими.
. Доводилось ли вам виДеть в ночном лесу призрачное мерцание крохотных огоньков? Это - жуки-светлячки. Секрет их свечения связан с окислением органического вещества люциферина. Причем химическая энергия превращается в световую с исключительно ВЫСОким коэффициентом полезного Деиствия, Достигающим 50-80 96.
Реакция окисления люциферина иДет при непременном участии ферментов. Но какова их роль? Лабораторная проверка показала: при реакции без участия ферментов квантовый выход световой энергии примерно в 100 раз меньше, чем в ферментативных процессах. ПравДа, механизм Действия пока еще не совсем ясен. Возможно, ферменты служат своеобразными "матрицами ", которые Делают молекулы люциферина более жесткими. И поэтому с увеличением жесткости молекул растет и световая "отдача".
Если предположение окажется правильным, то перед нами откроются пути к созДанию принципиально новых и весьма эффективных систем освещения.
А листья растений? Мы знаем, что в них из углекислого газа изготовляются "кирпичики ' буДущих белков - молекулы углевоДов. Но вот что интересно: зеленый лист Делает это с помощью световых лучей, которые сами по себе не в состоянии разбить молекулу углекислого газа. Поэтому лист накапливает ИЛИ концентрирует энергию солнца. Как? К сожалению, механизм процессов фотосинтеза до сих пор остается загас)кой. А между тем с ним связаны многие наши наДежДы на будущее. В том числе наДежДа использовать солнечную энергию. У большинства полупровоДниковых СОЛНиНЫХ батарей КПД сегодня ниже 20 0/0. В зеленом же листе, при малой освещенности, процессы фотосинтеза идут с к.п. д. примерно в 20-25 0/0. Но с возрастанием интенсивности светового потока эта цифра уменьшается до 2-4 96.
Вероятно, срабатывает защитным механизм, спасающий клетки от губительного избытка раДиации. Вряд ли нам удастся увеличить к.п. д. фотосинтеза в самих растениях путем генетических изменений.
В связи с этим интересны недавно проведенные эксперименты, в которых с помощью выДеленных из клетки хлоропластов обычную воду под Действием солнечного света уДалось разложить на воДороД и кислород Уже сам по себе такой способ утилизации солнечной энергии весьма заманчив. Ведь воДороД ценен не только как высокоэффективное топливо. Он необходимый реагент в топливных элементах - устройствах для прямого преобразования химической энергии в электрическую. А кислороД очень нужен промышленности.
Судя по преДварительным результатам, в проведенных экспериментах уДалось осуществить преобразование солнечной энергии с кпд. значительно большим, чем у соврелЮННЫХ фотоэлектрических устройств. СлеДовательно, если поиски увенчаются успехом и исслеДователи смогут Довести к.п.Д. процесса до 40-60 0 0, их усилия станут 6С[ЖНЫМ шагом на пути к широкому использованию солнечном энергии.
ПреДвижу возражения скептиков: где взять огромное количество иммобилизованных ферментов, необходимое для решения подобной заДачи? Видимо, еДинственныи выход научиться синтезировать их чисто химическим путем ...