Информация, поступающая обратно в управляющий центр, стремится противодействовать отклонению управляемой величины от управляющей, но она может зависеть от этого отклонения весьма различным образом. Простейшие управляющие системы — линейные системы: выходной сигнал исполнительного органа зависит линейно от входного сигнала, и при сложении входных сигналов складываются и выходные сигналы. Выходной сигнал отсчитывается каким-нибудь прибором, также линейным. Этот отсчет просто вычитается из входного сигнала. Мы хотим дать точную теорию работы такой системы и, в частности, исследовать ее неисправное поведение и возникновение в ней колебаний при неправильном обращении или перегрузке.
В этой книге мы по возможности избегали математической символики и математических методов, хотя в ряде мест, включая предыдущую главу, вынуждены были примириться с ними. Сейчас речь опять пойдет о вопросах, где математическая символика — самый надежный язык; избежать ее можно только ценой длинных перифраз, которые вряд ли будут понятны профану и которые поймет лишь читатель, знакомый с математической символикой, поскольку в его власти перевести их в символы. Наилучший компромисс, который мы можем выбрать, — это дополнять символику пространными словесными пояснениями.
Пусть f
(t) — функция времени t, где t изменяется от — до ; иначе говоря, f(t) — величина, принимающая определенное числовое значение для каждого момента t. В любой момент t нам доступны величины f(s), где s меньше или равно t, но отнюдь не больше t. [c.165] Мы располагаем устройствами, электрическими или механическими, которые задерживают входной сигнал на фиксированное время и выдают нам при входном сигнале f(t) выходной сигнал f(t—), где — фиксированная задержка.Мы можем включить одновременно несколько таких устройств, получив на выходах сигналы f
(t—1), f(t—2),…, f(t—n). Каждый из этих выходных сигналов мы можем умножить на фиксированные величины, положительные или отрицательные. Так, при помощи потенциометра можно умножить напряжение на фиксированное положительное число, меньшее единицы, и не очень трудно изобрести автоматические компенсационные устройства и усилители, чтобы умножать напряжение на отрицательные величины или на величины, большие единицы. Нетрудно также составить простую электрическую схему для непрерывного сложения напряжений, при помощи которой мы получим выход . (4.01)
Увеличивая число задержек k
и выбирая подходящим образом коэффициенты ak, мы можем сколь угодно приблизиться к выходному сигналу вида . (4.02)
Обратим внимание на то существенное обстоятельство, что в этом выражении интегрирование производится от 0 до , а не от — до . В противном случае мы могли бы с помощью различных практических устройств преобразовать наш сигнал в f
(t+), где положительно. Но это предполагает знание будущего функции f(t), a f(t) может быть величиной, которая не определяется однозначно своим прошлым; пример — координаты трамвая, который может повернуть на стрелке в ту или другую сторону. Если физический процесс по видимости дает нам оператор, преобразующий f(t) в (4.03)
[c.166]
где а
не исчезает при отрицательных , это значит, что мы не имеем больше истинного оператора для f(t), определяемого однозначно прошлым этой функции. Такое может встретиться в реальных физических ситуациях. Например, динамическая система без входа может прийти в постоянные колебания или даже в колебания, нарастающие до бесконечности, с неопределенной амплитудой. В этом случае будущее системы не определяется ее прошлым, и мы, наверное, можем найти формализм, в котором бы использовался оператор, зависящий от будущего.Операция, посредством которой получено выражение (4.02) из f
(t), имеет еще два существенных свойства: 1) она не зависит от сдвига начального момента и 2) она линейна. Первое свойство выражается утверждением, что если , (4.04)
то
. (4.05)
Второе выражается утверждением, что если
, (4.06)
то
. (4.07)
Можно показать, что в некотором подходящем смысле всякий оператор для прошлого функции f
(t), линейный и инвариантный относительно сдвига начального момента, имеет вид (4.02) или является пределом последовательности операторов этого вида. Например, f’(t) есть результат применения оператора с такими свойствами к f(t), и потому [c.167] , (4.08)
где
(4.09)
Как мы уже видели, функции еzt
составляют особенно интересное семейство с точки зрения оператора (4.02), поскольку , (4.10)
и оператор задержки становится просто множителем, зависящим от z
. Оператор (4.02) переходит тогда в . (4.11)
и также оказывается оператором умножения, зависящим только от z
. Выражение (4.12)