Одним из простейших случаев такой спонтанной самоорганизации является так называемая неустойчивость Бенара. Если мы будем постепенно нагревать снизу не слишком толстый слой вязкой жидкости, то до определенного момента отвод тепла от нижнего слоя к верхнему, обеспечивается одной лишь теплопроводностью, без конвекции. Когда разница температур нижнего и верхнего слоев достигает некоторого порогового значения, система выходит из равновесия и происходит поразительная вещь. В жидкости возникает конвекция, при которой ансамбли из миллионов молекул внезапно, как по команде, приходят в согласованное движение, образуя конвективные ячейки в форме правильных шестиугольников. Это означает, что большинство молекул начинают двигаться с почти одинаковыми скоростями, что противоречит и положениям молекулярно-кинетической теории, и принципу порядка Больцмана из классической термодинамики. Если в классической термодинамике тепловой поток считается источником потерь (диссипации), то в ячейках Бенара он становится источником порядка. Пригожин характеризует возникшую ситуацию как гигантскую флуктуацию, стабилизируемую путем обмена энергией с внешним миром.
Отметим некоторую особенность: организм не просто поглощает негэнтропию (порядок) из внешней среды, он его намеренно создает, то есть структурирует входящую внешнюю энергию, строго следуя диссипативной теории Пригожина.
Физически основным и самым интересным моментом нелинейной термодинамики является ни что иное как точка бифуркации, то есть момент решения нелинейного уравнения, где диссипативная система может выбрать разные варианты этого решения. Варианты эти будут зависеть от предыдущей истории системы и от состояния (физического и информационного) внешней среды, окружающей систему.
Механизм синтеза как раз и представляет собой такую точку, то есть физически бифуркация выглядит как каскад непрерывных и постоянных делений стволовых клеток (от мультипотентных до дифференцированных клеток ткани).
Только в организме, кроме всего прочего, присутствует строгий автоматический контроль информационного и физического состояния среды, окружающей эти клетки. Это уже называется внешним управлением системой через состояние среды, поэтому сюда, кроме нелинейной термодинамики Пригожина, необходимо применить кибернетические подходы Ляпунова в теории оптимального управления. Только тогда мы увидим, что неопределенность, возникающая в точке бифуркации у Пригожина, в живом организме на самом деле таковой не является, поскольку подчиняется не только внутренней истории самой системы, но и подлежит невероятно четкому и эффективному внешнему управлению через изменение свойств, окружающей данную систему (стволовую клетку) среды.
Механизм распада
Обратимся еще раз к приведенному выше примеру с автомобилем Элвиса, который мы хотим сохранить как можно дольше. Для того, чтобы установить новый агрегат, сначала необходимо удалить изношенный. Так и в живом организме, в соответствии с биофизическим равновесием, наряду с механизмом синтеза, присутствует альтернативный
Среди фагоцитов отдельно можно выделить две самые многочисленные группы клеток крови. Первая группа – это нейтрофилы. Их задача убирать всяческий «мусор», который образуется в организме или попадает в него извне, то есть они выполняют неспецифическую функцию мусорщиков организма. Вторая группа – это моноциты, назовем их «интеллигентными макрофагами», их основная функция состоит в активном фагоцитозе труднодоступных объектов, поэтому они обладают свойством проникать в ткани через сосудистую стенку, и устранять из них нежелательные клеточные и молекулярные элементы. При невозможности удалить крупные инородные объекты, моноциты окружают такие объекты и изолируют их от тканей организма. Моноциты обладают способностью, проникая в ткани, дифференцироваться в тканеспецифические макрофаги – гистиоциты. Моноцит также интересен тем, что являясь фактически дифференцированной клеткой крови, он тем не менее сохраняет уникальные возможности дополнительной дифференцировки в гистиоциты разных тканей. Именно поэтому механизм распада и обладает свойством дифференциального выбора того, что должно быть подвергнуто разрушению. Основным органом, контролирующим работу фагоцитов, является селезенка. Согласно изречению Галена, селезёнка – орган «полный таинственности». В первую очередь, селезенка интересна тем, что количество стволовых клеток в ней составляет 3–4 клетки на 100 от общего клеточного объема, а это огромное количество! Внутреннее содержимое селезёнки получило название пульпы. В пульпе селезёнки различают две основные зоны: красную и белую.