Читаем Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть полностью

Правильным было бы сэкономить деньги и не показывать вам рекламу. Шансы на то, что вы купите игру, довольно невелики – особенно если сравнить вас со мной. Ведь я – и это известно компании – не так давно нажал на один из ее баннеров, связанных с футболом; часто посещаю страницы ESPN, посвященные баскетболу; в течение нескольких последних дней искал билеты на матч с участием New York Knicks. Конечно, EA Sports будет правильнее потратить свои 5 центов на меня.

Условная сумма в 5 центов (или реальная сумма в 3 доллара за одну тысячу показов) может показаться незначительной, но умножьте ее на миллионы ежедневных рекламных показов, и вы поймете, насколько важно выбрать правильную цель: конкретного и подходящего вам человека, а не просто рядового посетителя сайта ESPN.com. Преимущества индивидуального таргетирования очевидны, и многие компании в наши дни идут именно по этому пути. Чтобы это стало возможным, должны были появиться две вещи – возможность обмена рекламными баннерами и развитие системы торгов за показ баннеров в режиме реального времени.

Торги представляют собой борьбу за рынок рекламных мест. В них участвуют издатели (такие как ESPN) и покупатели (такие как EA sports). Торги предназначены и для того, чтобы сделать процесс купли-продажи более гибким, простым и эффективным с помощью технологических решений.

К основным баннерообменным сетям относятся AdECN (принадлежащая Microsoft); Right Media (подразделение Yahoo!); CONTEXTWEB Ad Exchange; а также DoubleClick Ad Exchange (принадлежащая Google). Одно из основных преимуществ обмена рекламой подобного рода связано с тем, что ставки на рекламу устанавливаются в режиме реального времени.

Концепция реального времени достаточно прямолинейна. Давайте вернемся к нашему примеру с посещением страницы ESPN.com. Чтобы упростить ситуацию, представим себе, что на рынке имеются два потенциальных покупателя – EA и BMW (ваши визиты на страницы ESPN.com, посвященные гольфу, повысили показатель P(C) до уровня, заинтересовавшего автопроизводителя). Итак, мы с вами вводим адрес ESPN.com, и рекламный сервер распознает, кто мы такие. Так как вы обладаете большей потенциальной ценностью, чем я, то автопроизводитель (BMW) готов заплатить больше EA, лишь бы только вы увидели его рекламу. Моя же допустимая цена для EA Sports выше, чем готова платить BMW. EA Sports выигрывает торги, и я увижу рекламу ее нового баскетбольного стимулятора. Все это происходит за долю секунды.

Скорее всего ни EA, ни BMW сами не занимаются расчетами допустимой стоимости показа баннера. Для этого они нанимают внешнюю компанию, проводящую расчеты на основании установленных ими параметров. Подобные специализированные подрядчики не только рассчитывают допустимую цену с помощью некоторых описанных выше алгоритмов, но и предсказывают, сколько будут готовы заплатить за показы другие участники рынка. Именно такой тип алгоритма используют брокеры на Уолл-стрит для выбора акций. Бывшие ученые-ракетчики, прежде писавшие алгоритмы для Уолл-стрит, теперь пишут их для баннерообменных сетей. Один из них, зарабатывающий созданием подобных алгоритмов себе на жизнь, рассказал мне, что основная проблема таких предсказаний – угадать, чему может быть равна вторая по размеру ставка, а затем сделать свою ставку всего на доли центов выше. Это имеет немалый смысл.

Давайте еще раз воспользуемся тем же примером с BMW и EA Sports (и крайне упрощенным математическим аппаратом) и покажем, как это работает. Если допустимая цена показа рекламы ESPN.com составляет для BMW 10 центов, но при этом компания знает, что вторая по размеру ставка будет равна 5 центам, то ей имеет смысл снизить ставку до 5,5 цента, а не заявлять о готовности заплатить 10 центов. Компании, которым удается овладеть таким подходом, с одной стороны, экономят огромные суммы, с другой – успешно выбирают самых интересных для себя людей.

Победа в этой игре сводится к двум вещам – управлению математическим аппаратом и получению доступа к данным cookie. Чем больше информации о cookie у вас есть, тем лучше будет работать математический аппарат и тем больше денег вы будете экономить, делая ставки, учитывая правильные cookie. Именно таким образом в цифровом мире ставится знак равенства между данными и деньгами, и именно поэтому сбор, управление и анализ таких данных – это большой и серьезный бизнес. Компании типа BlueKai специализируются на строительстве платформ управления данными, помогающих клиентам решать такую задачу. Это – одна из самых быстрорастущих отраслей в сегодняшнем маркетинге.

Перейти на страницу:

Похожие книги

Практика управления человеческими ресурсами
Практика управления человеческими ресурсами

В книге всемирно известного ученого дан подробный обзор теоретических и практических основ управления человеческими ресурсами. В числе прочих рассмотрены такие вопросы, как процесс управления ЧР; работа и занятость; организационное поведение; обеспечение организации управления трудовыми ресурсами; управление показателями труда; вознаграждение.В десятом издании материал многих глав переработан и дополнен. Это обусловлено значительным развитием УЧР: созданием теории и практики управления человеческим капиталом, повышенным вниманием к роли работников «передней линии», к вопросам разработки и внедрения стратегий УЧР, к обучению и развитию персонала. Все эти темы рассмотрены в новых или существенно переработанных главах. Также в книге приведено много реальных примеров из практики бизнеса.Адресовано слушателям программ МВА, аспирантам, студентам старших курсов, обучающимся по управленческим специальностям, а также профессиональным менеджерам и специалистам по управлению человеческими ресурсами.

Майкл Армстронг

Деловая литература / Деловая литература / Управление, подбор персонала / Финансы и бизнес
Революция платформ. Как сетевые рынки меняют экономику – и как заставить их работать на вас
Революция платформ. Как сетевые рынки меняют экономику – и как заставить их работать на вас

Эта книга подробно рассказывает о важнейшем экономическом и социальном явлении нашего времени, которое поставили себе на службу Uber, Airbnb, Amazon, Alibaba, PayPal, eBay и другие наиболее динамично растущие бренды, а именно о платформах — новой бизнес‑модели, использующей технологии объединения людей, организаций и ресурсов в интерактивной экосистеме.Если вы хотите узнать, что такое платформы, как они работают, как устроены компании, использующие эту модель, и как создать успешный платформенный бизнес, то эта книга для вас. «Революция платформ» позволит вам легко сориентироваться в новом, меняющемся мире, в котором все мы живем, работаем и развлекаемся.На русском языке публикуется впервые.

Джеффри Паркер , Маршалл ван Альстин , Санджит Чаудари , Санджит Чаудари Альстин

Деловая литература / Деловая литература / Маркетинг, PR / Управление, подбор персонала / Финансы и бизнес