С эффектом Доплера дело обстоит в точности так же. Если мимо вас по шоссе проносится машина с включенной сиреной, то по мере ее приближения тон сигнала звучит все выше, но стоит ей с вами поравняться, как звук сразу же падает на целую октаву и затем (по мере удаления) становится все более басовитым. То же самое можно наблюдать на станционной платформе: гудок приближающейся электрички упорно лезет вверх, но когда она пролетает мимо, тон гудка скачкообразно меняется с высокого на низкий. Суть эффекта лежит на поверхности, ибо звук – это чередование сжатий и разрежений воздуха, а расстояние от одной области сжатия до другой есть не что иное, как длина волны. Чем больше длина волны, тем ниже звук, а чем волна короче, тем звуковой тон выше. Если источник звука (в данном случае – электричка) движется по направлению к вам, то на единицу длины приходится большее число волн – волновой «частокол» становится более тесным. Если же источник удаляется, то картина оказывается прямо противоположной – длина волны начинает расти. Таким образом, длина волны, испускаемой источником, зависит не только от свойств источника, но и от его скорости.
Свет, как и звук, тоже имеет волновую природу и представляет собой колебания (или волны) электромагнитного поля. Интервал частот, воспринимаемых человеческим глазом (видимая область спектра), лежит между красным светом с длиной волны 740 нм (нанометров, или миллиардных долей метра) и фиолетовым светом с длиной волны 400 нм. Длинноволновое инфракрасное излучение мы воспринимаем как тепло, распространяющееся от нагретых тел, а наибольшей длиной волны обладают радиоволны, лежащие в крайней правой части электромагнитного спектра. Область коротких волн представлена ультрафиолетовым, рентгеновским и гамма-излучением (по мере уменьшения длины волны). Таким образом, и гамма-лучи, и видимый свет, и радиоволны являются по своей физической природе электромагнитным излучением и различаются между собой только лишь длиной волны, или частотой колебаний в секунду. Чем выше частота колебаний, тем меньше длина волны, и наоборот.
В оптическом диапазоне наибольшую длину волны имеет красный свет, следом идут оранжевый, желтый, зеленый, голубой, синий и фиолетовый – самый коротковолновый в видимой области спектра. Если источник света движется по направлению к нам, то расстояние между гребнями следующих друг за другом волн уменьшится, а частота колебаний соответственно возрастет. В результате все линии сместятся к фиолетовому концу спектра на одну и ту же величину. Можно сказать, что свет приближающейся к нам звезды немного поголубеет. При удалении объекта от наблюдателя возникает противоположная картина: интервал между гребнями волн увеличивается, а частота колебаний падает. Линии смещаются в красную часть спектра, и свет улетающей звезды приобретает красноватый оттенок. Таким образом, в первом случае мы имеем фиолетовое смещение, а во втором – красное. Величину смещения сравнивают с положением линий в спектре неподвижного источника.
Вестон Слайфер проанализировал спектры 40 галактик и пришел к выводу, что большая их часть от нас удаляется, причем с очень большими скоростями – порядка сотен и даже тысяч километров в секунду. Этот факт его весьма заинтриговал, поскольку куда естественнее было бы обнаружить хаотичный разброс в направлении их скоростей. Если вы 40 раз подбросите монету, крайне маловероятно, что она 35 раз подряд упадет орлом вверх. Такие фокусы просто-напросто запрещены теорией вероятностей. И чем больше измерений проводил Слайфер, тем более странная складывалась картина, ибо величина красного смещения раз от раза росла. Положение усугублялось тем, что американский астроном, как мы помним, понятия не имел о внегалактической природе своих объектов: он считал их туманностями, расположенными в нашей Галактике.
Когда в середине 20-х годов прошлого века удалось доказать, что туманности Слайфера в действительности не что иное, как огромные звездные острова, лежащие далеко за пределами Млечного Пути, дышать стало полегче. Коль скоро у объекта обнаруживаются сразу два необычных свойства – аномальная скорость и нетипичное местоположение, – можно рассчитывать, что между ними существует какая-то связь. Работу Слайфера продолжили другие астрономы, и через короткое время у них в руках уже был внушительный список внегалактических туманностей с различными показателями красного смещения. Впервые удача улыбнулась в 1929 году нашему старому знакомцу Эдвину Хабблу, который вообще-то был юристом по образованию, а астрономией увлекся позже. Сравнивая между собой скорости галактик, он обнаружил простую закономерность: чем дальше та или иная галактика расположена, тем быстрее она от нас удаляется. Другими словами, скорости галактик прямо пропорциональны их расстоянию от земного наблюдателя, что выражается соотношением v = Нr где v – скорость удаления, r – расстояние от галактики до Земли, а Н – коэффициент пропорциональности, впоследствии получивший название постоянной Хаббла по первой букве его фамилии (Hubble).