Как бы то ни было, европейцы изо всех сил старались понять странное поведение электрона. Главная проблема, с которой они сталкивались, заключалась в том, что электрон вел себя то как частица, то как волна. Эта невероятная двойственность доводила физиков почти до помешательства. Все следующее десятилетие ученые по всей Европе лихорадочно выдвигали конкурирующие гипотезы. Во Франции принц Луи-Виктор де Бройль, потомок герцогского рода, пришел к заключению, что отдельные аномалии в поведении электронов исчезают, если рассматривать их как волны. Это наблюдение вызвало живой интерес австрийца Эрвина Шредингера, который весьма изощренным способом построил удобную для использования систему, названную
В результате у физиков появились две теории, основанные на противоречащих друг другу посылках, но дающие одинаковые результаты. Это была неприемлемая ситуация.
Наконец, в 1926 году Гейзенберг нашел знаменитый компромисс, создав новую дисциплину, которая получила известность под названием
На практике это означает, что нельзя предсказать, где будет находиться электрон в каждый конкретный момент. Можно только рассчитать вероятность его нахождения там. В известном смысле, как это выразил Деннис Овербай, электрон не существует, пока его не замечают. Или чуть иначе: пока его не замечают, следует считать, что электрон находится «одновременно везде и нигде».
Если вас это смущает, можете найти утешение в том, что это смущало и многих физиков. Овербай пишет: «Бор однажды заметил, что тот, кто, впервые услышав о квантовой теории, не возмутился, просто не понял, о чем шла речь». Когда Гейзенберга спросили, как можно представить себе атом, он ответил: «Не пытайтесь».
Так что атом оказался совсем не похожим на то, каким его представляло большинство. Электрон не летает вокруг ядра, как планета вокруг Солнца, а, скорее, имеет бесформенные очертания наподобие облака. «Скорлупа» атома представляет собой не какую-то твердую блестящую оболочку, как порой подталкивают думать некоторые иллюстрации, а просто наиболее удаленные от центра края этих неясно очерченных электронных облаков. Само облако – это, по существу, всего лишь зона статистической вероятности, обозначающая пространство, за пределы которого электрон очень редко выходит. Так что атом, если бы его можно было увидеть, скорее похож на очень нечетко очерченный теннисный мяч, чем на жесткий металлический шар (впрочем, он не очень похож ни на то, ни на другое, и вообще не похож ни на что из когда-либо виденного вами; все-таки мы имеем дело с миром, очень сильно отличающимся от того, что мы наблюдаем вокруг себя).
Казалось, удивительному нет конца. Как выразился Джеймс Трефил137
, ученые впервые столкнулись с «областью Вселенной, которую наши мозги просто не приспособлены понимать». Или, как сказал Фейнман, «в поведении малых тел нет ничего общего с поведением больших». Копнув глубже, физики поняли, что открыли мир, в котором не только электроны могут перескакивать с орбиты на орбиту, не перемещаясь через разделяющее их пространство, но также материя может возникать из ничего «при условии, – по словам Алана Лайтмана138 из Массачусетского технологического института, – что она достаточно быстро исчезает».Возможно, самой захватывающей из квантовых невероятностей является идея, вытекающая из сформулированного в 1925 году Вольфгангом Паули принципа запрета, согласно которому в определенных парах субатомных частиц, даже разделенных значительными расстояниями, каждая моментально «узнает», что делает другая. Частицы обладают свойством, известным как спин
139. И, согласно квантовой теории, в тот момент, как вы устанавливаете спин одной частицы, ее родственная частица, независимо от того, как далеко она находится, моментально начинает крутиться с той же скоростью в противоположном направлении.