Читаем Кто изобрел современную физику? От маятника Галилея до квантовой гравитации полностью

Он бы легко убедился, однако, что для Луны полученное соотношение, увы, не выполняется, и очень сильно. Скорость Луны в 60 раз меньше, «чем надо». Поскольку скорость Луны и расстояние до нее были хорошо известны, Галилей подумал бы об ускорении свободного падения g, которое сам измерил. Но измерил-то на поверхности Земли, а не на высоте Луны. Соотношение выполнилось бы, если ускорение свободного падения на высоте Луны в 3600 раз меньше земного. Расстояние до Луны в 60 раз больше радиуса Земли. Напрашивается гипотеза: ускорение свободного падения меняется с удалением от Земли обратно пропорционально квадрату расстояния. Эту гипотезу Галилей мог подтвердить и на спутниках Юпитера, и на спутниках Солнца — планетах. В результате он получил бы новый закон природы — общий закон свободного падения, определяющий ускорение свободного падения g(R) в точке, удаленной на расстояние R от небесного тела массы M


g(R) = GM/R2,


здесь G — константа, одинаковая для любого небесного тела, а значит, константа фундаментальная.

Как Галилей мог открыть общий закон свободного падения

Исследуя свободное падение, Галилей выяснил, что шар, брошенный горизонтально в пустоте, падает по параболе, форма которой определяется начальной скоростью V

и ускорением свободного падения g: при этом скорость движения по горизонтали сохраняется Vг = V, а по вертикали растет со временем Vв
= gt.

Сделаем мысленный эксперимент, поднявшись вместе с мысленным Галилеем на легендарную башню. Будем бросать шары горизонтально со все большей скоростью. Если скорость броска мала, шар упадет — по крутой параболе — на землю поблизости от башни. А если скорость очень велика, парабола станет очень пологой, и шар улетит очень далеко от Земли.

Спрашивается, с какой скоростью надо бросить шар, чтобы, свободно падая, он оставался на той же высоте от земной поверхности, уходящей закругленно «вниз»?

На этот вопрос ныне может ответить и школьник, нарисовав указанную схему, применив теорему Пифагора и учтя, что радиус Земли R 6000 км, а ускорение свободного падения g 10 м/сек2. Эти величины, как и теорему Пифагора, знал также и Галилей. И мог получить, что искомая скорость связана с g

и R соотношением


V2= gR


и равна примерно 8 км/сек. Летя с такой скоростью, шар оставался бы на постоянном удалении от земной поверхности. Совсем как Луна.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже