В статье 1877 г. «О связи второго начала механической теории теплоты с исчислением вероятностей» Больцман подробно развивает свой статистический метод. Он указывает в самом начале статьи, что связь между вторым началом термодинамики и исчислением вероятностей «обнаруживается прежде всего в том, что, как мною было показано, аналитическое доказательство второго начала невозможно никакими другими способами, кроме тех, которые заимствуются из теории вероятностей». Чрезвычайно интересно с исторической точки зрения введение Больцманом в этой работе гипотезы, что молекула газа может терять и приобретать только дискретные порции энергии, кратные некоторой наименьшей порции энергии . «Перед столкновением, — пишет Больцман, — каждая из обеих сталкивающихся молекул имеет живую силу 0, или , или 2 и т. д. ... или p и вследствие какой-то причины будет происходить то, что и после соударения никогда ни одна из сталкивающихся молекул не принимает живой силы, не содержащейся в этом ряде». Так Больцман начинает свои статистические рассуждения, оговариваясь, однако, что это фикция, которой не соответствует ничего реального, но которая облегчает математическую трактовку проблемы. В дальнейших вычислениях Больцман освобождается от гипотезы, полагая в пределе эпсилон =0.
Больцман ставит задачу найти закон распределения, который позволяет знать, как много из общего числа молекул n обладает энергией 0, , 2,.... Он подсчитывает, сколько комбинаций соответствует такому распределению состояний, полагая, что число этих комбинаций определяет вероятность данного состояния.
Если бы Больцман считал молекулы газа неразличимыми, как это делал в квантовой теории идеального газа Эйнштейн, и сохранил предположение о конечной порции энергии, то он получил бы формулу статистики Бозе—Эйнштейна. Но Больцман этого не сделал. Он считал неразличимыми между собой молекулы, находящиеся в одном и том же энергетическом состоянии. Однако когда молекула одной энергетической группы меняется местами с молекулой другой энергетической группы, то, хотя распределение молекул не меняется, тем не менее возникает новая комплексия. Число комплексий, которым может быть осуществлено данное состояние, и определяет, по Болыдману, вероятность этого состояния. Таким образом, она, по Больцману, определяется числом:
где n - общее число молекул, w0 - число молекул, обладающих энергией, равной нулю (Больцман считает энергию между 0 и , отступая от первоначальной квантовой гипотезы), w1, — число молекул, обладающих энергией (между и 2), и т. д. При этом
и общая энергия
и общая энергия
Логарифмируя выражение для вероятности и определяя максимум этой логарифмической функции при условии постоянства n и L, Больцман находит распределение Максвелла — Больцмана, которое оказывается, таким образом, наиболее вероятным распределением. Подсчитывая наиболее вероятное распределение скоростей, Больцман вводит величину , равную среднему логарифму функции распределения, взятой со знаком минус. Максимальное значение этой величины, которую Больцман называет «мерой распределения», при условии постоянства числа молекул и их общей кинетической энергии определяет наиболее вероятное распределение.
Величину, которую Больцман обозначал через Е и , в дальнейшем стали обозначать Н, и она оказалась пропорциональной энтропии. Закон возрастания энтропии у Больцмана получает простую интерпретацию: «Система стремится к наиболее вероятному состоянию». Второе начало потеряло характер абсолютного закона природы и стало статистическим законом. В природе возможны процессы, происходящие в направлении убывания энтропии, и это, по мнению Больцмана, избавляет Вселенную от тепловой смерти. Для космоса в целом тепловой смерти нет. Взгляды и выводы Больцмана подвергались ожесточенной критике. Но вместе с тем они воспринимались и развивались другими исследователями: Максвеллом, Лоренцем, Планком. Планк дал простой вывод и простое точное выражение соотношения между энтропией и вероятностью. В обозначениях Планка оно имеет вид:
S = k lnW,
где S - энтропия, W - вероятность, k -постоянная, равная R/N, которую Планк назвал в честь Больцмана постоянной Больцмана. Из соотношения Планка исчезла неопределенная аддитивная константа, фигурирующая у Больцмана, и это соответствует тепловой теореме Нернста. формула соотношения между энтропией и вероятностью, данная Планком, фигурирует сегодня во всех руководства и монографиях как соотношение Больцмана.