Ядерный реактор, способный производить 100 кВт электрической и 2000 кВт тепловой энергии круглосуточно в течение 10 лет, должен весить около 4000 килограммов – всего 4 тонны, – то есть он будет достаточно легким, чтобы привезти его с Земли. В противоположность этому, массив солнечных батарей, способный произвести то же количество электрической энергии при круглосуточной работе (и всего 1/20 часть тепловой энергии) в течение примерно того же срока службы, будет весить около 27000 килограммов и займет площадь в 6600 квадратных метров (около 2/3 футбольного поля). Если мы захотим получить то же количество
Если энергоснабжение на начальных этапах освоения Марса должно быть основано на ядерных источниках, то после постройки полноценной базы условия, вероятно, изменятся. В какой-то момент должна появиться возможность построить солнечные энергетические системы из местного сырья. Если вы живете на Марсе, то добыть сотни тонн местных материалов будет гораздо легче, чем импортировать четыре тонны оборудования с Земли.
Использование энергии Солнца и ветра
Есть два вида солнечных энергетических систем, которые могут быть изготовлены на Марсе: динамические и фотоэлектрические. Первые, также называемые гелиотермальными, являются низкотехнологичными. Принцип их работы основан на использовании параболического зеркала. Оно концентрирует солнечный свет на бойлере, где жидкость нагревается и расширяется, запуская турбинный генератор. Эти системы могут иметь довольно высокую эффективность (около 25 %), но на сегодняшний день они не получили широкого применения в космической программе, так как из-за того, что в них используются движущиеся части, многие считают их ненадежными. Однако на постоянной марсианской базе люди все время будут находиться поблизости, чтобы поддерживать работу систем солнечных батарей и ремонтировать неисправное оборудование. В этом случае аргумент надежности, выдвигаемый против динамических систем, становится значительно менее убедительным.
Более того, поскольку они будут представлять собой низкотехнологичные конструкции из зеркал, котлов и прочих подобных элементов, относительно легко увидеть, что из этого возможно изготовить на Марсе. Например, зеркала делаются из пластика, покрытого очень тонким слоем алюминия для увеличения отражательной способности. Трубы, котлы, вал турбины и лопасти можно выполнить из стали. Чтобы в действительности достичь уровня эффективности в 25 %, турбины придется изготовить с допусками, слишком точными для марсианской базы. Впрочем, это не проблема: при необходимости легко можно будет принять более низкие допуски и смириться с эффективностью в 15 %. В дополнение к этим преимуществам динамические системы также позволяют получить большое количество полезного тепла, возможно, в четыре-шесть раз превышающего их электрическую мощность.
Солнечные динамические системы, однако, требуют чистого неба. Для того чтобы параболические зеркала эффективно концентрировали свет, весь он должен приходить из одного и того же места – непосредственно от Солнца. Он не может исходить от диффузных источников, размазанных по всему марсианскому небу. На основании данных, полученных «Викингом», достаточного количества погожих дней для эффективной работы солнечных динамических систем можно ожидать только в течение северной весны и лета. В оставшуюся половину года зеркала, вероятно, станут давать очень мало энергии. Такие сезонные колебания могут быть приемлемы для некоторых целей. Не обязательно производить металлы круглый год. Но если солнечной энергии суждено стать основным источником питания базы, потребуются более надежные технологии.