Космология занимается изучением физических свойств Вселенной как целого. В частности, ее целью является создание теории всей охваченной астрономическими наблюдениями области пространства, которую принято называть Метагалактикой. Как известно, теория относительности приводит к выводу о том, что присутствие больших масс влияет на свойства пространства – времени. Свойства привычного нам евклидова пространства (например, сумма углов треугольника, свойства параллельных линий) вблизи больших масс изменяются или, как говорят, пространство «искривляется». Это искривление пространства, создаваемое отдельными массами (например, звездами), очень мало. Так, следует ожидать, что вследствие искривления пространства луч света вблизи Солнца должен изменить свое направление. Точные измерения положений звезд вблизи Солнца но время полных солнечных затмений позволяют уловить этот эффект, правда, на пределе точности измерений. Однако суммарное действие гравитирующих (т.е. обладающих притяжением) масс всех галактик и сверхгалактик может вызвать определенную кривизну пространства в целом, что существенным образом повлияет на его свойства, а следовательно, и на эволюцию всей Вселенной. Даже сама постановка задачи определения (на основе законов теории относительности) свойств пространства и времени при произвольном распределении масс чрезвычайно трудна. Поэтому обычно рассматриваются некоторые приближенные схемы, называемые моделями Вселенной. Самые простые из них основаны на предположении, что вещество во Вселенной в больших масштабах распределено одинаково (однородность), а свойства пространства одинаковы по всем направлениям (изотропность). Такое пространство должно обладать некоторой кривизной, а соответствующие ему модели называются однородными изотропными моделями Вселенной. Решения эйнштейновских уравнений тяготения для случая однородной изотропной модели показывают, что расстояния между отдельными неоднородностями, если исключить их индивидуальные хаотические движения (пекулярные скорости), не могут сохраняться постоянными: Вселенная должна либо сжиматься, либо, что соответствует наблюдениям, расширяться. Если отвлечься от пекулярных скоростей галактик, то скорость взаимного удаления любых двух тел во Вселенной тем больше, чем больше расстояние между ними. Для относительно малых расстояний эта зависимость линейна, причем коэффициентом пропорциональности служит постоянная Хаббла. Из сказанного следует, что расстояние между любой парой тел есть функция времени. Вид этой функции зависит от знака кривизны пространства. Если кривизна отрицательна, то «Вселенная» все время расширяется. При нулевой кривизне, соответствующей; евклидову пространству, расширение происходит с замедлением, причем скорость расширения стремится к нулю. Наконец, расширение «Вселенной», обладающей положительной кривизной, в некоторую эпоху должно смениться сжатием. В последнем случае в силу неевклидовой геометрии пространство должно быть конечным, т.е. иметь в любой момент времени определенный конечный объем, конечное число звезд, галактик и т.д. Однако «границ» у Вселенной, естественно, не может быть ни в каком случае. Двумерной моделью такого замкнутого трехмерного пространства является поверхность раздуваемого шара. Галактики в такой модели изображаются плоскими фигурами, начерченными на поверхности. При растяжении шара увеличивается площадь поверхности и расстояние между фигурами. Хотя в принципе такой шар может неограниченно расти, площадь его поверхности конечна в каждый момент времени. Тем не менее в его двумерном пространстве (поверхности) границ нет. Кривизна пространства в однородной изотропной модели за-висит от значения средней плотности вещества Если плотность меньше некоторого критического значения, кривизна отрицательна и имеет место первый случай. Второй случай (нулевая кривизна) осуществляется при критическом значении плотности. Наконец,
при плотности больше критической ѕ кривизна положительна (третий случай). В процессе расширения абсолютное значение кривизны может меняться, но знак ее остается постоянным. Критическое значение плотности выражается через постоянную Хаббла Н и гравитационную постоянную f следующим образом: