Читаем Курс общей астрономии полностью

где l - длина волны и D - диаметр телескопа. Если l = 0,55 мк (зеленый свет) и D =100 см, то d = 0,5510-6 радиан = 0",1. Очевидно, две точки (например, две находящиеся рядом звезды) можно различить только в том случае, если расстояние между ними больше d . Этот минимальный угол d называется теоретическим угловым разрешением телескопа. Практически угловое разрешение больших телескопов ограничивается другим фактором - атмосферным дрожанием. Дрожание вызывается оптической неоднородностью и неспокойствием атмосферы. Отдельные небольшие массы воздуха движутся друг относительно друга, давление в них колеблется, в результате чего коэффициент преломления в разных точках атмосферы на пути луча неодинаков. Луч, проходя атмосферу, преломляется и отклоняется, причем величина и направление этого отклонения меняются со временем. Минимальный размер неоднородностей в атмосфере составляет около 10 см и поэтому изображение звезды размывается, если диаметр телескопа существенно больше 10 см. Если диаметр телескопа меньше, то изображение колеблется как целое. Изображение звезды, размытое атмосферным дрожанием, называется диском дрожания. Диаметр диска дрожания зависит от местных природных условий (“астроклимат”), а также от размера и конструкции телескопа и башни. Космические тела излучают электромагнитную энергию в очень широком диапазоне частот - от гамма-лучей до самых длинных радиоволн (см. 102). Радиоизлучение от космических объектов принимается специальными установками, называемыми радиотелескопами, которые состоят из антенны и очень чувствительного приемника. В настоящее время космическое радиоизлучение исследуется в длинах волн от одного миллиметра до нескольких десятков метров. Антенны радиотелескопов, принимающих миллиметровые, сантиметровые, дециметровые и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных астрономических рефлекторов. В фокусе параболоида устанавливается облучатель устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передает принятую энергию на вход приемника, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора. Радиоастрономические зеркала не требуют такой точности изготовления, как оптические. Чтобы зеркало не давало искажений, его отклонение от заданной параболической формы не должно превышать, как уже упоминалось, l /8, а длины волн l , в радиодиапазоне намного больше, чем в оптическом. Например, для волны l = 10 см достаточно иметь точность зеркала около 1 см. Более того, зеркало радиотелескопа можно делать не сплошным, например, натянуть металлическую сетку на каркас, придающий ей приблизительно параболоидальную форму. Наконец радиотелескоп можно сделать неподвижным, если заменить поворот зеркала смещением облучателя (в пределах до 10-20°). Благодаря этим особенностям радиотелескопы могут намного превосходить по размерам оптические телескопы. Самая большая в мире “полнопрофильная” (т.е. представляющая собой единое сплошное зеркало) радиоастрономическая антенна имеет диаметр 300 м. Она находится на обсерватории Аресибо в Пуэрто-Рико и установлена в естественном углублении (кратер потухшего вулкана), которому придали форму параболоида, закрепили бетоном и на бетон нанесли металлическое покрытие (рис. 103). Конечно, неподвижная антенна, направленная в зенит, не позволяет принимать радиоизлучения из любой точки небесной сферы, но благодаря суточному вращению Земли и возможности смещать облучатель значительная часть неба оказывается доступной наблюдениям. Радиоастрономические зеркала меньших размеров устанавливают на вертикально-азимутальной или экваториальной монтировке. Самая большая антенна такого типа (диаметр 100 м, рис. 104) находится в Федеративной Республике Германии (Бонн). Подобные гигантские антенны не могут, однако, работать на миллиметровых волнах, так как сделаны недостаточно точно (при диаметре в несколько десятков метров выдержать параболическую форму с точностью, например, до нескольких десятых долей миллиметра, - задача очень трудная). Среди высокоточных инструментов, пригодных для работы на самых коротких волнах, к числу наилучших принадлежат два советских 22-метровых радиотелескопа (один в Физическом институте им. П.Н. Лебедева, другой - в Крымской астрофизической обсерватории). Радиотелескопы очень большого размера могут быть построены из большого количества отдельных зеркал, фокусирующих принимаемое излучение на один облучатель. Примером является радиотелескоп РАТАН-600 (расшифровывается как "радиотелескоп Академии наук, диаметр 600 м"), который установлен вблизи станицы Зеленчукской (недалеко от 6-м рефлектора) и представляет собой замкнутое кольцо диаметром около 600 м, состоящее из 900 плоских зеркал размером 2 7,4 м, образующих сегмент параболоида (рис. 105). При малых зенитных расстояниях может работать все кольцо, а при больших - некоторая его часть. Антенны такого типа называются антеннами с незаполненной апертурой. На волнах длиной от нескольких метров и более параболические антенны не применяются. Здесь используются системы, состоящие из большого количества дипольных антенн, электрическая связь между которыми обеспечивает необходимую для радиотелескопа направленность приема.

Перейти на страницу:

Похожие книги

Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия

Известный физик-теоретик, доктор философии и популяризатор науки дает собственный прогноз о нашем будущем. Автор этой книги уверен: совсем скоро людям придется покинуть родную планету и отправиться в космос. Потому что грядет глобальный кризис, несущий угрозу всему живому на Земле…По мнению Митио Каку, людям предстоит стать «двухпланетным видом», как когда-то метко выразился астрофизик Карл Саган. В этой книге ученый рассматривает проблемы, ждущие нас во время освоения космоса, а также возможные пути их решения.Вы узнаете, как планируется колонизировать Марс, что уже сделано для покорения этой планеты, прочтете о новейших достижениях в сфере строительства звездолетов. Ознакомитесь с прогнозом ученого о том, могут ли люди обрести бессмертие. Откроете, как в научном мире относятся к возможности существования внеземных цивилизаций. И вместе с автором поразмышляете над тем, что произойдет, когда человечество сможет выйти за пределы Вселенной…

Митио Каку , Мичио Каку

Астрономия и Космос / Педагогика / Образование и наука
«Аполлон-8»
«Аполлон-8»

В августе 1968 г. НАСА приняло смелое решение: запустить первый обитаемый космический корабль к Луне. Всего год назад три астронавта погибли в пожаре во время испытаний, и с тех пор программа «Аполлон» терпела одну неудачу за другой. Тем временем СССР выигрывал космическую гонку, холодная война становилась все жарче с каждым месяцем, и обещание президента Кеннеди отправить человека на Луну к концу десятилетия казалось несостоятельным. Но когда Фрэнка Бормана вызвали на секретную встречу и предложили его экипажу опасную миссию, он без колебаний согласился.Эта книга – первая подробная история «Аполлона-8». Джеффри Клугер предлагает читателю захватывающую историю о миссии, которая была столь рискованной, что воспринималась почти как лотерея, но, увенчавшись успехом, ознаменовала начало новой эры в освоении космического пространства.

Джеффри Клюгер

Астрономия и Космос
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Космос. Прошлое, настоящее, будущее
Космос. Прошлое, настоящее, будущее

«Земля – колыбель человечества, но нельзя вечно жить в колыбели», – сказал когда-то К.Э. Циолковский. И сегодня достаточно оглянуться назад, чтобы понять, как он был прав! Полет Гагарина, выход в космос Алексея Леонова, высадка на Луну, запуски спутников и космических станций – хроника космической эры живет в памяти ее свидетелей. Много лет журнал «Наука и жизнь» рассказывал своим читателям о достижениях космонавтики, астрономии и астрофизики. О звездных событиях на ночном небе и в лабораториях ученых можно было узнать, листая его страницы. Сегодня авторы осмысляют почти столетний опыт этого космического путешествия. И знатоки космоса, и те, кто только его открывают, найдут в этой книге много интересного!

Антон Иванович Первушин , Владимир Георгиевич Сурдин , Ефрем Павлович Левитан , Николай Владимирович Мамуна

Астрономия и Космос