В то же время естественные заселенности связывающего (g
) и разрыхляющего (u) одноэлектронных состояний зависят от способа построения полной двухэлектронной функции молекулы Н2 из одноэлектронных (табл. 3).Таблица 3. Естественные заселенности в молекуле H
2 [35]Матрицу плотности (r|r')
, как и матрицы плотности более высокого порядка, можно представить через "естественные" заселенности и соответствующие естественные функции в виде естественного разложения:Такое представление матрицы плотности обобщает приведенное выше выражение (4.6) для одноэлектронной матрицы плотности "чистого" состояния одного электрона с определенной -функцией. В случае многоэлектронной системы отдельному электрону уже нельзя сопоставить какую-либо функцию (r
). Состояние электрона в многоэлектронной системе является "смешанным" и описывается одноэлектронной матрицей плотности (r|r') или набором функций (r) и соответствующих им "чистых" состояний. При этом вероятность пребывания электрона в состоянии, определяемом функцией , характеризуется естественной заселенностью n.Вследствие антисимметричности многоэлектронной функции (x1
,...,xN) относительно перестановокМногоэлектронные функции (x1
,...,xN) содержат очень большую информацию, значительная часть которой, как правило, не представляет физического интереса. Дело в том, что операторы, соответствующие наблюдаемым физическим величинам, являются суммами одно- и двухчастичных операторовКаждый из операторов
Из всего сказанного выше можно сделать вывод, что использование формализма матрицы плотности в. квантовохимических расчетах должно существенно упрощать их физическую и химическую интерпретацию.
Наиболее полное и строгое изложение метода матрицы плотности в теории молекул дано в монографии М. М. Местечки на [17].
Канонические и локализованные молекулярные орбитали
Молекулярные орбитали fi
определяются обычно как собственные функции некоторого одноэлектронного гамильтонианаВ качестве
В то же время каждой канонической МО соответствует одно-электронная энергия i
, которая, согласно теореме Купманса, определяет потенциал ионизации молекулы, то есть энергию удаления электрона из i-гo одноэлектронного состояния в молекуле. Эти орбитали могут успешно использоваться и при оценках энергий электронных возбуждений.В однодетерминантном приближении канонические МО являются одновременно естественными молекулярными орбиталямц в том смысле, что одноэлектронная плотность представима в виде естественного разложения: