Читаем Квантовая механика и интегралы по траекториям полностью

Для атома, рассматриваемого в качестве системы q и взаимодействующего с электромагнитным полем при температуре T как с некоторой средой, величина aR даётся выражением (12.128), проинтегрированным по всем собственным колебаниям поля с различными частотами . Его можно разделить на часть, соответствующую холодной среде, описываемую уравнением (12.123), и внешний шумовой потенциал


a

R

=

C^2

2

(+)

+

1

eh/kT

-1


C^2

2

[

(+)

+

(-)

]

.


(12.131)


Первый член вызывает переходы только к более низким уровням, называемым спонтанным излучением. Второй член с одинаковой лёгкостью вызывает переходы вверх и вниз, называемые индуцированным излучением, или индуцированным поглощением. Мы говорим, что этот переход вызывается внешним потенциалом или шумом, среднеквадратичная интенсивность которого при частоте меняется с температурой как 1/(eh/kT-1). Таким способом Эйнштейн впервые рассмотрел законы излучения чёрного тела. Как мы теперь видим, любое окружение, дающее квадратичный потенциал влияния при температуре T (назовём его окружением с линейной реакцией), можно рассмотреть тем же путём. Многие исследователи распространили аргументы Эйнштейна на другие системы, например на шумовые флуктуации потенциала в вольтметре при температуре T. Первый член измеряет скорость, с которой энергия определённым способом отбирается от системы. Он измеряет величину диссипации, вызванной средой (например, электрическим сопротивлением металла или радиационным сопротивлением электромагнитного поля). Относительно тел при температуре T можно сказать, что они ведут себя так, как будто, кроме диссипации, имеется генерируемый средой шумовой сигнал, средний квадрат которого при любой частоте пропорционален диссипации при той же частоте и величине (eh/kT-1)-1. Это утверждение называется диссипатпивно-флуктуационной теоремой.

Этот вопрос мы рассматривать здесь не будем (см. [20—22]).

§10. Заключение

Из рассмотренных приложений интегралов по траекториям к теории вероятностей ясно, что если подынтегральные выражения имеют гауссову форму, то наш метод может оказаться весьма полезным. Однако при этом мы не выходим за круг задач, которые можно решить и другими методами без использования интегралов по траекториям. Возникает резонный вопрос о практической значимости интегралов по траекториям. На это можно сказать лишь, что если задача не является гауссовой, то с помощью интегралов по траекториям её по крайней мере можно сформулировать, исследовать и надеяться, что дальнейшее развитие этого метода позволит также и решить задачу. Единственный случай, когда с помощью интегралов по траекториям получается результат, который нельзя просто вывести обычными методами,— это вариационный принцип, обсуждавшийся в гл. 11. Можно думать, что при дальнейшем совершенствовании метода число таких результатов возрастёт.

Стоит также подчеркнуть, что этот метод допускает быстрый переход от одной формулировки задачи к другой и часто даёт ясное или легко выводимое указание на соотношение, которое затем со значительно большей затратой труда можно вывести обычными способами.

Что касается применений к квантовой механике, то методу интегралов по траекториям присущи, к сожалению, серьёзные недостатки. Таким методом нельзя просто рассматривать спиновые или другие подобные операторы. Наиболее плодотворным он оказывается в применении к системам, для описания которых вполне достаточно координат и канонически сопряжённых им импульсов. Тем не менее спин является неотъемлемой частью реальных квантовомеханических систем. И очень серьёзным ограничением является то, что полуцелый спин электрона не имеет простого и ясного представления в нашем методе. Спин электрона можно ввести, если амплитуды вероятности и все величины рассматривать как кватернионы, а не как обычные комплексные числа; однако возникающая при этом некоммутативность таких чисел — серьёзное осложнение.

Вместе с тем многие результаты и формулировки метода интегралов по траекториям можно выразить с помощью другого математического формализма, представляющего собой одну из форм исчисления упорядоченных операторов (см. [23]). В этой форме большинство результатов предыдущих глав находят аналогичное, но более общее представление, включающее некоммутирующие переменные (такое обобщение неизвестно лишь для специальных задач гл. 11). Например, обсуждение в данной главе функционалов влияния должно натолкнуть читателя на мысль, что важным и интересным обобщением была бы связь среды не с координатой q, а с некоммутирующим оператором, таким, как спин. Такие обобщения не могут быть просто выражены с помощью интегралов по траекториям, но легко формулируются на языке тесно связанного с ним операторного исчисления.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное