1. Чтобы это проверить, вообразите, что вы кладете на пол линейку между своими ногами и зеркалом. Если вы стоите в комнате в точке
Затем, если зеркало такое хорошее, что вы едва его замечаете, вы увидите в зеркале еще одну линейку. Эта линейка представляет собой отражение той, что лежит у ваших ног, и счет ее делений идет в обратном направлении.
Прослеживая взглядом эту линейку, вы отсчитываете 1 см, потом 2, 3, 4 и так далее и, наконец, 100 см. Тогда, посмотрев вверх, вы увидите в зеркале самого себя, смотрящего вам в глаза! Ваше зеркальное отражение выглядит в точности как вы – с той лишь разницей, что вы находитесь на +100 см, а ваш двойник на -100 см.
Между вами и вашим двойником есть и другие различия. Однако пока давайте думать только о том, что вы находитесь на +100 см, а ваш двойник на -100 см.
2. В примечаниях 2, 3 и 4 обсуждаются более удивительные характеристики комплексных чисел. Вы можете выражать геометрию комплексных чисел тригонометрически, то есть в терминах углов.
Примем, что 9 – это угол между R и осью х, как показано ниже на рис. 8.4 (tan означает тангенс, cos означает косинус; tan означает тангенс угла 9).
Математики называют [cos + isin] угловым множителем комплексного числа и в соответствии с законами алгебры и тригонометрии обозначают его как еi
. Числоотсюда
3. Приведенное выше уравнение z = K[cos + isin] = К
С показательными функциями (экспонентами) иметь дело легче, чем с синусами и косинусами. Поэтому в физике для представления колебаний постоянно используются комплексные числа в форме
По аналогии можно сказать, что воображаемый мир всегда находится в другом измерении по отношению к реальному или, наоборот, что при возрастании 9 оси X и Y выглядят как две волны – одна впереди, а другая чуть позади, – как если бы они были барабанами, звук которых отдается эхом «бум бум», пауза, «бум бум», пауза, «бум бум» и так далее. Две волны, не совпадающие по фазе друг с другом, графически показаны на рисунке выше. Это аналогично ритму музыки на заднем плане нашего переживания.
В одной из последующих глав я покажу, что в квантовой физике периодическое поведение комплексных чисел (волновое уравнение) используется для описания невидимого состояния материальной системы. Состояние физической системы, например маленького шарика, элементарной частицы или человека, в каждой точке пространства и времени может быть представлено комплексным числом.
4. Если мы проводим линию