При включении батареи электричество, свойственное каждой молекуле диэлектрика, смещается. На внешних поверхностях диэлектрика можно обнаружить сместившиеся заряды. Внутри диэлектрика, в каждой его молекуле, они остаются скомпенсированными. Но и после того, как ток смещения прекратится, на обкладках конденсатора остаются электрические заряды, а в пространстве, занятым диэлектриком, сохраняется электрическое поле.
Фарадей описывал его при помощи электрических силовых линий, идущих от одной границы диэлектрика к другой. Количество (густота) этих силовых линий отображает «силу» — напряженность электрического поля, зависящую от напряжения батареи, от толщины диэлектрика и от его «сорта».
В уравнениях, написанных Максвеллом, эта «сила» отличается от напряженности электрического поля в пустом пространстве постоянным множителем, характеризующим данный диэлектрик. По аналогии с магнитной проницаемостью, связывающей напряженность магнитного поля в пустоте с магнитной индукцией в железном сердечнике, этот множитель называют диэлектрической проницаемостью, а «силу» электрического поля внутри диэлектрика — электрической индукцией.
Опыт с конденсатором можно продолжить. Шаг первый: отключают металлические проводники от батареи. При этом в цепи ничего не происходит. Шаг второй: соединяют между собой концы этих проводников. Если опыт проводят в затемненной комнате и напряжение батареи достаточно велико, то, за мгновение до соприкосновения проводников, можно увидеть искру. В освещенной комнате искру заметить трудно, но можно услышать слабый треск — микрогром от микромолнии. Стрелка гальванометра при этом отклониться, как от толчка и затем медленно возвратится к нулю. После этого ток прекратится, а заряд конденсатора исчезнет.
Ток смещения, возникающий в диэлектрике, это реальность. Он является продолжением тока проводимости, текущего по проводам.
Проследим еще раз за этим важнейшим опытом, учитывая роль тока смещения.
При взгляде на цепь, в которой батарея соединена проводами с конденсатором, кажется, что цепь не замкнута. Но непосредственно после того, как батарея была присоединена к цепи, в ней на короткое время возникает ток. В течение этого времени происходит смещение зарядов в диэлектрике, образующее ток смещения. По проводам идет ток проводимости, а сквозь конденсатор проходит ток смещения. Включив в эту цепь гальванометр, можно убедиться в том, что ток в ней максимален в момент включения батареи и убывает до нуля за короткое время, зависящее от характеристик всех ее элементов — батареи, конденсатора и соединительных проводов.
Ток во всей цепи становится равным нулю, когда прекращается ток смещения в диэлектрике, расположенном между обкладками конденсатора.
Максвелл пишет: «… изменение смещения эквивалентно току, причем этот ток должен быть учтен в уравнениях»… Максвелл поясняет: «Электрическое смещение состоит в противоположной электризации молекулы или частицы тела… Изменения электрического смещения должны быть добавлены к токам… для того, чтобы получить полное движение электричества».
Учет тока смещения в диэлектрике сделал группу уравнений, связывающих электрические процессы с изменением во времени магнитной индукции, похожей на вторую группу, связывающую магнитные процессы с изменением во времени электрической индукции.
После этого на первый план вышел законный вопрос: как при помощи уравнений описать опыты Фарадея с цепью, содержащей конденсатор, когда между его обкладками нет диэлектрика?
Этот вопрос потребовал глубокого раздумья. Убеждение в правильности идей Фарадея, в безупречности его опытов подсказало простой ответ. В случае, когда между обкладками конденсатора нет диэлектрика, там остается воздух. Но этот ответ не полон, конденсатор можно поместить под стеклянный колпак и откачать из него воздух.
Опыт показывает, однако, что свойства конденсатора, пластины которого разделены воздухом, не изменяются заметным образом после того, как воздух откачан и между пластинами оказывается пустота.
Значит ток смещения распространяется и там, где нет молекул. Максвелл был сыном своего времени. Он не мог думать о процессах, протекающих в пустоте. Любой процесс должен иметь носителя.
В этом случае Максвелл не должен был придумывать что-то новое. Он мог следовать за своим кумиром — Фарадеем. Фарадей считал носителем электрических и магнитных процессов эфир. Он представлял такие процессы при помощи силовых линий и считал, что эти линии отображают реальные, но не видимые натяжения эфира.