Читаем Логика полностью

Все тигры (М) — млекопитающие (Р).

Все тигры (М) — хищники (S).

-----------------

Все хищники (S) — млекопитающие

(Р).

Отношения между терминами данного силлогизма могут быть представлены двояко, как это показано на рисунке. И в первом, и во втором случаях все М (тигры) входят в объем Р (млекопитающие) и все М входят также в объем S (хищники). Это соответствует информации, содержащейся в двух посылках силлогизма. Но отношение между объемами Р и S

может быть двояким. Охватывая М, объем S может полностью входить в объем Р или объем S может лишь пересекаться с объемом Р. В первом случае можно было бы сделать общее заключение "Все хищники — млекопитающие", но во втором случае правомерно только частное заключение "Некоторые хищники — млекопитающие". Информации, позволяющей сделать выбор между этими двумя вариантами, в посылках не содержится. Значит, мы не вправе делать общее заключение. Силлогизм не является правильным.

В силлогизме, как и во всяком дедуктивном умозаключении, в заключении не может содержаться информация, отсутствующая в посылках. Заключение только развертывает информацию посылок, но не может привносить новую информацию, отсутствующую в них.

В обычных рассуждениях нередки силлогизмы, в которых не выражается явно одна из посылок или заключение. Такие силлогизмы называются энтимемами. Примеры энтимем: "Щедрость заслуживает похвалы, как и всякая добродетель", "Он — ученый, поэтому любопытство ему не чуждо", "Керосин — жидкость, поэтому он передает давление во все стороны равномерно" и т. п. В первом случае опущена меньшая посылка "Щедрость — это добродетель", во втором — большая посылка "Всякому ученому не чуждо любопытство", в третьем — опять-таки большая посылка "Всякая жидкость передает давление во все стороны равномерно".

Для оценки правильности рассуждения в энтимеме следует восстановить ее в полный силлогизм.

Глава 10. Доказательство и опровержение

1. Понятие доказательства и его структура

Об И. Ньютоне рассказывают, что, будучи студентом, он начал изучение геометрии, как было принято в то время, с чтения "Геометрии" Евклида. Знакомясь с формулировками теорем, он видел, что они справедливы, и не изучал доказательства. Его удивляло, что люди затрачивают столько усилий, чтобы доказать совершенно очевидное.

Позднее Ньютон изменил свое мнение о необходимости доказательств в математике и других науках и хвалил Евклида как раз за безупречность и строгость его доказательств.

Невозможно переоценить значение доказательств в нашей жизни и особенно в науке. И тем не менее доказательства встречаются не так часто, как хотелось бы. К доказательствам прибегают все, но редко кто задумывается над тем, что означает "доказать", почему доказательство "доказывает", всякое ли утверждение можно доказать или опровергнуть, все ли нужно доказывать и т. п.

Наше представление о доказательстве как особой интеллектуальной операции формируется в процессе проведения конкретных доказательств. Изучая разные области знания, мы усваиваем и относящиеся к ним доказательства. На этой основе мы постепенно составляем — чаще всего незаметно для себя — общее интуитивное представление о доказательстве как таковом, его общей структуре, не зависящей от конкретного материала, о целях и смысле доказательства и т. д.

Изучение доказательства на конкретных его образцах и интересно, и полезно. Но также необходимо знакомство с основами логической теории доказательства, которая говорит о доказательствах безотносительно к области их применения. Практические навыки доказательства и интуитивное представление о нем достаточны для многих целей, но далеко не для всех. Практика и здесь, как обычно, нуждается в теории.

Логическая теория доказательства в основе своей проста и доступна, хотя ее детализация требует специального символического языка и другой изощренной техники современной логики.

Под доказательством в логике понимается процедура установления истинности некоторого утверждения путем приведения других утверждений, истинность которых уже известна и из которых с необходимостью вытекает первое.

В доказательстве различаются тезис — утверждение, которое нужно доказать, основание (аргументы) — те положения, с помощью которых доказывается тезис, и логическая связь между аргументами и тезисом. Понятие доказательства всегда предполагает, таким образом, указание посылок, на которые опирается тезис, и тех логических правил, по которым осуществляются преобразования утверждений в ходе доказательства.

Перейти на страницу:

Похожие книги

Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература