Читаем Магия чисел полностью

На каждом этапе я слышу (а не вижу) новую задачу на сложение. У меня в голове это звучит примерно так:

858 плюс 634 равно 1458 плюс 34,

равно 1488 плюс 4, равно 1492.

Ваш внутренний голос может звучать иначе, чем мой (не исключено, что вам удобнее видеть числа, а не слышать их), но, как бы там ни было, наша цель — «подкреплять» числа на их пути, чтобы не забыть, на каком этапе решения задачи мы находимся и не начинать все сначала.

Давайте еще попрактикуемся.


Вначале сложите в уме, потом проверьте вычисления.



Этот пример немного сложнее предыдущего, так как требует держать в уме числа на протяжении всех трех шагов.

Однако в нем можно воспользоваться альтернативным методом подсчета. Я уверен, что вы согласитесь: гораздо проще к 759 прибавить 500, чем 496. Так что попробуйте прибавить 500 и затем вычесть разность.



До сих пор вы последовательно расчленяли второе число, чтобы сложить его с первым. На самом деле не имеет значения, какое число разбивать на части, важно соблюдать порядок действий. Тогда вашему мозгу не придется решать, в какую сторону направиться. Если запомнить второе число намного легче первого, то их можно поменять местами, как в следующем примере.



Закончим тему сложением трехзначных чисел с четырехзначными. Так как память среднестатистического человека одновременно может удерживать только семь или восемь цифр, это как раз подходящая задача, с которой вы можете справиться, не прибегая к искусственным устройствам запоминания (таким как пальцы, калькуляторы или приемы мнемотехники из главы 7). Во многих задачах на сложение одно или оба числа заканчиваются на 0, поэтому уделим внимание примерам такого типа. Начнем с самого легкого:



Так как 27 сотен + 5 сотен равняется 32 сотням, мы просто прибавляем 67 с целью получить 32 сотни и 67, то есть 3267. Процесс решения идентичен для следующих заданий.



Поскольку 40 + 18 = 58, первый ответ — 3258. Во втором примере 40 + 72 в сумме больше 100, поэтому ответ будет 33 сотни с «хвостиком». Итак, 40 + 72 = 112, поэтому ответ — 3312.

Эти задачи легкие, потому что значащие цифры (отличные от нуля) в них складываются лишь один раз и примеры можно решить в одно действие. Если значащие цифры складываются два раза, то и действий понадобится два. Например:



Задача в два действия схематически выглядит следующим образом.


Тренируйтесь на представленных ниже упражнениях в сложении трехзначных чисел до тех пор, пока не станете с легкостью выполнять их в уме, не подглядывая в ответ. (Ответы находятся в конце книги.)



Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука