Читаем Магия математики: Как найти x и зачем это нужно полностью

Дополняющее число для 87 – 13, для 75 – 25 и так далее. И наоборот: дополняющее число для 13 – 87, а для 25 – 75. Решая каждую такую задачу слева направо, вы легко заметите, что во всех примерах (кроме последнего) сумма крайних левых чисел будет равна 9, а крайних правых – 10. Закономерность нарушается только тогда, когда числа заканчиваются на 0 (как в последнем примере): дополняющим числом для 80 будет 20.

Применим эту стратегию к вычислению 1234 – 567. Даже вычитание на бумаге в этом случае – не самое простое занятие, что уж говорить про подсчет в уме. Но с дополняющими числами этот зубодробительный пример вычитания превращается в простейший пример сложения! Вместо того чтобы вычитать 567, вычтем 600. Это гораздо проще, особенно если считать слева направо: 1234 – 600 = 634. Но ведь это не тот ответ, который нам нужен? Насколько не тот? Ровно на разность между 567 и 600 – такую же, как и между 67 и 100, то есть на 33. Значит,

1234 – 567 = 634 + 33 = 667

Правда, очень просто? Потому что при сложении ничего не нужно держать «в уме». И так просто дело будет обстоять почти всегда, когда вы используете дополняющие числа при вычитании, пусть и трехзначные:



В большинстве случаев (когда числа не заканчиваются на 0) сумма «основной» и «дополнительной» цифр равна 9, за исключением последней пары, равной 10. Например, для 789: 7 + 2 = 9; 8 + 1 = 9; 9 + 1 = 10. Следовательно, дополнительное число, считая слева направо, вычисляется так: 9 – 7 = 2, 9 – 8 = 1, 10 – 9 = 1. Метод дополнительных чисел пригодится при подсчете сдачи. Мои любимые бутерброды в соседнем магазине, например, стоят $6,76. Как узнать, сколько я получу, если расплачусь банкнотой в $10? Да как раз с помощью дополняющего до 1000 числа для 676 – 324. Значит, сдача будет $3,24.

Отступление

Каждый раз, покупая бутерброд, я волей-неволей замечаю, что и его цена, и возвращаемая мне сдача представляют собой квадраты чисел (26^2 = 676, а 18^2 = 324). Вопрос на засыпку: есть еще одна пара квадратов чисел, которые дают в сумме 1000. Сможете их найти?

Умножение в уме

Вы не поверите, но для того, чтобы легко умножать в уме, хотя бы примерно, достаточно выучить обычную таблицу умножения. А потом – набить руку (не беспокойтесь, учить больше ничего не придется) в решении примеров, в которых однозначное число умножается на двузначное. И снова: главный трюк – считать слева направо. Умножая, например, 8 на 24, умножьте сначала 8 x 20, а потом – 8 x 4:

8 x 24 = 8 x 20 + 8 x 4 = 160 + 32 = 192

Хорошо потренировавшись, переходите к перемножению одно- и трехзначных чисел. Это немного сложнее – просто потому, что чуть больше нужно держать в уме. Трюк в том, чтобы последовательно складывать промежуточные результаты и тем самым своевременно освобождать свою «оперативную» память. Например, при умножении 456 x 7 вашим предпоследним действием должно быть сложение 2800 + 350, а последним – прибавление 42.



Следующий шаг по пути мастера – операции с двузначными числами. Как по мне, так здесь-то и начинается самое веселье, хотя бы потому, что способов, которыми можно достичь нужного результата, много и все они разные. Это значит, что вы можете проверить себя – и одновременно насладиться стройностью арифметических чудес. Рассмотрим всего один пример: 32 x 38.

Самый популярный (и наиболее близкий к подсчету в столбик) метод – это метод сложения, безотказный в решении почти любой задачи. Он предлагает нам разбить одно из чисел (обычно то, которое состоит из меньших цифр) надвое, умножить каждую часть на второе число, а потом сложить результаты. Например,

32 x 38 = (30 + 2) x 38 = 30 x 38 + 2 x 38 =…

Как будем умножать 30 x 38? Сначала умножим 3 x 38, а в конце прибавим 0. То есть 3 x 38 = 90 + 24 = 114, поэтому 30 x 38 = 1140. А потом 2 x 38 = 60 + 16 = 76. В итоге

32 x 38 = 30 x 38 + 2 x 38 = 1140 + 76 = 1216

Другой способ решить наш пример (особенно если одно из наших чисел заканчивается на 7, 8 или 9) – использовать метод вычитания. Начать следует с того, что 38 = 40 – 2, а значит,

38 x 32 = 40 x 32 – 2 x 32 = 1280 – 64 = 1216

Перейти на страницу:

Похожие книги

Достаточно ли мы умны, чтобы судить об уме животных?
Достаточно ли мы умны, чтобы судить об уме животных?

В течение большей части прошедшего столетия наука была чрезмерно осторожна и скептична в отношении интеллекта животных. Исследователи поведения животных либо не задумывались об их интеллекте, либо отвергали само это понятие. Большинство обходило эту тему стороной. Но времена меняются. Не проходит и недели, как появляются новые сообщения о сложности познавательных процессов у животных, часто сопровождающиеся видеоматериалами в Интернете в качестве подтверждения.Какие способы коммуникации практикуют животные и есть ли у них подобие речи? Могут ли животные узнавать себя в зеркале? Свойственны ли животным дружба и душевная привязанность? Ведут ли они войны и мирные переговоры? В книге читатели узнают ответы на эти вопросы, а также, например, что крысы могут сожалеть о принятых ими решениях, воро́ны изготавливают инструменты, осьминоги узнают человеческие лица, а специальные нейроны позволяют обезьянам учиться на ошибках друг друга. Ученые открыто говорят о культуре животных, их способности к сопереживанию и дружбе. Запретных тем больше не существует, в том числе и в области разума, который раньше считался исключительной принадлежностью человека.Автор рассказывает об истории этологии, о жестоких спорах с бихевиористами, а главное — об огромной экспериментальной работе и наблюдениях за естественным поведением животных. Анализируя пути становления мыслительных процессов в ходе эволюционной истории различных видов, Франс де Вааль убедительно показывает, что человек в этом ряду — лишь одно из многих мыслящих существ.* * *Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека фонда «Династия». Дмитрий Борисович Зимин — основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека фонда «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».

Франс де Вааль

Биология, биофизика, биохимия / Педагогика / Образование и наука
Что нужно, чтобы жить дружно: Весёлое воспитание для всей семьи
Что нужно, чтобы жить дружно: Весёлое воспитание для всей семьи

На чём стоит дом? На любви и заботе. На добром и внимательном отношении родителей к детям и детей к родителям. А ещё – на фундаменте семейных традиций.Традиции – необычайно сильная вещь. Они способны как объединить семью, так и наоборот – развести её в разные стороны, когда каждый – сам по себе. Как хранить первые и избавиться от вторых? В книге – конкретные способы, КАК сделать это.Откликаясь на просьбы читателей, в эту книгу мы добавили новые главы. Так что здесь – ещё больше полезных историй, творческих игр, весёлых заданий и практикумов как для родителей, так и для детей.

Заряна Владимировна Некрасова , Заряна Некрасова , Нина Некрасова , Нина Николаевна Некрасова

Педагогика, воспитание детей, литература для родителей / Педагогика / Образование и наука
Пока ваш подросток не свёл вас с ума
Пока ваш подросток не свёл вас с ума

«Пока ваш подросток не свёл вас с ума» — новая книга о воспитании детей знаменитого психолога Найджела Латты. Автор расскажет вам о том, как выжить в семье с подростком и остаться при этом в здравом уме. Он подскажет вам, что делать, когда вы уже просто на грани отчаяния. Эта книга — как визит на дом первоклассного психотерапевта. Неважно, в чём заключается проблема, — стратегии, описанные в этой книге, помогут вам понять, что происходит с вашими детьми и чем вы можете им помочь. Найджел Латта — психолог с 20-летним стажем, отец двоих сыновей и признанный специалист по «безнадёжным» случаям. Читайте Найджела Латту, и ваш случай не будет безнадёжным!

Найджел Латта

Педагогика, воспитание детей, литература для родителей / Педагогика / Психология / Психотерапия и консультирование / Образование и наука