Читаем Магистр Рассеянных Наук полностью

— Представь себе, такой человек нашёлся. Звали его Тезей.

— Тезей… — повторил Нулик, хихикнув. — Тезей-ротозей…

— То-то и оно, что не ротозей. Тезей сумел-таки разделаться с Минотавром и выбрался из лабиринта.

— С помощью цепочки Афродиты?

— Да нет, греческая богиня Афродита тут ни при чём. Помогла Тезею дочь Миноса — Ариадна. Она дала ему клубок ниток. Тезей как вошёл в лабиринт, так сразу стал разматывать этот клубок. А когда победил Минотавра, пошёл обратно вслед за нитью, сматывая её по пути. Так нить вывела его на свободу. Отсюда и пошло выражение «нить Ариадны» — нить, которая помогает выбраться из запутанных, затруднительных обстоятельств.

Президент озабоченно поджал губы.

— Теперь без катушки ниток в кармане шагу не сделаю! Мало ли что…

Опасения его были прерваны официанткой, которая спросила, что нам принести. Я заказал кофе, слоёных пирожков и трубочек с кремом.

Нулик опасливо зыркнул глазом.

— Боюсь, у меня на такой пир пресмыкающихся не хватит.

— Чего-чего? — недоуменно переспросил Сева.

— Ну, скарабеев, — объяснил президент и очень обиделся, когда все дружно захохотали.

— Нет, он меня уморит! — сказал Сева, утирая глаза. — Какие же скарабеи — пресмыкающиеся? Они же вовсе насекомые. Попросту навозные жуки. А их, между прочим, в Древнем Египте считали священными и потому изображали на кольцах, печатях, всяких амулетах. Считалось, что скарабей приносит счастье…

— Да ну?! — Президент даже подпрыгнул. — Хочу скарабея, хочу скарабея!.. — затараторил он, как Буратино.

Пришлось мне призвать его к порядку:

— Ты где находишься?

— В кафе.

— Так и веди себя соответственно. А хочешь говорить, так говори что-нибудь дельное. Вот хоть разберись в задаче со скарабеями.

Но охота говорить у президента почему-то разом прошла, и за дело взялся Сева. Выступление его было кратким — оно и понятно: он решал задачу алгебраическим способом.

— Число скарабеев, принесённых Черным Львом, обозначим буквой a. Тогда число скарабеев, добытых Мистером-Твистером, равно 2a — ведь у него их было вдвое больше! Число скарабеев, которых отнял у Чёрного Льва Джерамини, обозначим через икс. Выходит, что у этого Льва осталось…

— …(a-x) скарабеев, — подсказала Таня.

— Верно. А так как у Мистера-Твистера Джерамини отнял в три раза больше скарабеев, чем у Чёрного Льва, число это равно 3x. И значит, осталось у него (2a-3x) скарабеев. Известно, что после этого грабежа у обоих полицейских денег оказалось поровну. Поэтому мы можем смело приравнять (a-x) и (2a-3x). Вот вам и уравнение: (a-x

)=(2a-3x) Ну, президент, включайся, решай!

Нулик надулся.

— Да, оставили мне самое неинтересное…

Но всё-таки обиженно засопел над блокнотом:

— Переносим неизвестные в одну часть равенства, а известные — в другую. Тогда 2x=a. Отсюда x=1/2a. Что из этого вытекает? — Глаза президента вдруг оживились, голос окреп. — Из этого вытекает, что Джерамини заграбастал половину львиного богатства..

— Так, — кивнул Сева. — А какую часть своей добычи отдал Шейк-Твист?

— Не беспокойся, подсчитаем и это! — бодро пообещал Нулик. — Если x=1/2a

, то 3x=3/2a. Так? А раз у Мистера-Твистера было до делёжки 2a скарабеев, то отдал он 3/4 своей добычи: ведь 3/2a это 3/4 от 2a. Вот и все.

— Не совсем, — сказала Таня. — Остаётся узнать, во сколько раз у Джерамини оказалось денег больше, чем у обоих полицейских, вместе взятых.

— Узнаем и это, — заверил её Сева. — У каждого из обделённых осталось по 1/2

a скарабеев, а Джерамини забрал 1/2a+3/2a, то есть 2a скарабеев. Значит, у него оказалось их вдвое больше, чем у обоих полицейских вместе.

Тут пришла официантка и все принялись за еду.

— Глядите-ка, — сказал вдруг Олег, вертя в пальцах бумажную салфетку. — Эта салфеточка нам как нельзя кстати. Она словно нарочно сделана для третьей задачи Магистра о треугольных галстуках. Ведь она сама треугольная!

Нулик грустно посмотрел на недоеденное пирожное.

— Ничего, старина! — утешил его Олег. — В конце концов, есть и решать задачу можно одновременно. В общем, Единичке нужно было разделить большой треугольный лоскут на пять небольших треугольников так, чтобы площади их относились, как 1:2:2:3:4.

Он вынул карандаш и соединил середины боковых сторон треугольника, иначе говоря, провёл на салфетке одну из средних линий треугольника.

— Что у нас получилось? — спросил Олег. — Средняя линия разделила треугольник на две части. Одна из этих частей тоже треугольник, другая — трапеция. Все знают (а кто не знает, пусть докажет это сам), что площадь этого нового маленького треугольника в три раза меньше площади трапеции. Теперь проведём обе диагонали трапеции. Обратите внимание на то, что диагонали эти по совместительству представляют собой и медианы большого треугольника. Ведь они проведены в середине его боковых сторон! Все видят, что диагонали разделили трапецию на четыре части — на четыре треугольника. Самый маленький из них — верхний, два боковых — немного побольше, а самый большой — нижний. Узнаем, каковы площади этих треугольников.

— Узнаем! — решительно повторил Нулик, но тут же, впрочем, замолчал.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже