Вы без труда догадаетесь, как следует перегнуть тетратетрафлексагон, чтобы увидеть квадраты с единицами, двойками и тройками. Несколько труднее увидеть четверки. Разумеется, рвать картон не разрешается. Более сложные тетрафлексагоны этого типа с четным числом поверхностей можно построить из аналогичных прямоугольников, а тетрафлексагоны с нечетным числом «листов» — из зигзагообразных полосок, похожих на ту, из которой мы сложили тритетрафлексагон. В самом деле, чтобы построить трафлексагон этого типа, достаточно взять два ряда квадратиков, но добавление одного или нескольких лишних рядов без изменения основной структуры намного облегчает работу с моделью.
Тетратетрафлексагон, изображенный на рис. 98, часто используется для рекламных трюков: трудность отыскания «листка» с четверками превращает его в занимательную головоломку. Много таких складных игрушек мне доводилось видеть еще в тридцатые годы. В одной из них к скрытому развороту флексагона была приклеена «счастливая» монетка, которую нужно было найти. В другой, которая называлась «Cherchez la femme»,[34]
задача заключалась в том, чтобы отыскать портрет молодой девушки. И сейчас в магазинах можно увидеть старинный детский фокус, обычно известный под названием «Волшебный доллар». Шарнирные соединения этой игрушки, выполненные по схеме тритетрафлексагона, позволяют показывать незамысловатые фокусы с исчезновением долларовой купюры и других плоских предметов.Существует совсем другая разновидность тетрафлексагонов, обладающих необычным свойством: их можно сгибать вдоль двух взаимно перпендикулярных осей. Они также имеют по четыре и больше разворотов. На рис. 99 показано, как построить одну из фигур этого типа — гексатетрафлексагон. Прежде всего нужно взять полоску бумаги, вырезанную в форме квадратной рамки (рис. 99, а — вид спереди, б — вид сзади), разграфить ее на квадраты и перенумеровать их так, как показано на рисунке.
Рис. 99
После этого полоску бумаги нужно перегнуть вдоль всех прямых, которые отделяют друг от друга соседние квадраты. Линии сгиба должны быть «долинами», а не «горными хребтами», то есть сгибы должны быть обращены острием вниз. Наметив все линии сгиба, полоску нужно разгладить и затем снова сложить, перегнув ее вдоль прямых, указанных на рис. 99, а стрелками (направление сгиба нужно выбирать так, чтобы не «переутюживать» в противоположную сторону уже сделанные складки). Тогда обратная сторона полоски примет вид, показанный на рис. 99, в. Перегнем ее еще раз вдоль линий, указанных на рис. 99, в стрелками, и заправим квадрат с цифрой 3 под квадрат с цифрой 2. В результате все четыре верхних квадрата окажутся помеченными цифрами 2 (рис. 99, г). К левому верхнему квадрату с цифрой 2 приклеим прозрачную ленту, а другой конец ленты приклеим к квадрату с 1, находящемуся с обратной стороны флексагона.
Гексатетрафлексагон можно перегибать и по вертикальной, и по горизонтальной осям. Если брать полоски бумаги в форме квадратных рамок больших размеров, то будут получаться флексагоны с числом разворотов, увеличивающимся на 4: 10, 14, 18, 22 и т. д.
Для получения тетрафлексагонов других порядков следует брать полоски бумаги иной формы.
Самую замечательную головоломку — флексотрубку — Стоун случайно открыл, работая над флексагонами, имеющими форму прямоугольного треугольника («Для них, — сообщал он в одном письме, — мы не стали придумывать специального названия из соображений человеколюбия»). Построив плоский флексагон в форме квадрата, Стоун к своему изумлению обнаружил, что может превратить его в трубку. Как показали дальнейшие эксперименты, трубку можно полностью вывернуть наизнанку, если воспользоваться сложной системой сгибов по сторонам прямоугольных треугольников.
Флексотрубка делается из полоски бумаги, поделенной на четыре квадрата (рис. 100, а), каждый из которых в свою очередь разделен на четыре прямоугольных треугольника.
Рис. 100
Перегнув полоску в обе стороны по сторонам и диагоналям квадратов, склеим ее концы. У нас получится трубка квадратного сечения. Задача заключается в том, чтобы, пользуясь только намеченными сгибами, вывернуть эту трубку наизнанку. Более долговечную модель можно сделать, наклеив на матерчатую ленту 16 треугольников из картона или тонкого металла. Между треугольниками нужно оставить небольшой зазор, чтобы трубка сгибалась. Выкрасив эти треугольники с одной стороны, вы всегда сможете видеть, как далеко вам удалось продвинуться в выворачивании трубки.
Один из способов решения этой отнюдь не простой задачи показан на рис. 100, б— л. Совместив точки А, превратим трубку в плоский квадрат (рис. 100, в). Положив квадрат на стол, перегнем его вдоль прямой ВВ так, чтобы верхняя половина накрыла нижнюю. У нас получится треугольник, изображенный на рис. 100, г.